Evaluation of Multimedia Teaching Platform for Piano Accompaniment Using Logic Pro

Abstract: The role of education in a country's progress is crucial. It ensures the intellectual and human resources a country needs to grow. There has been a growing consensus in China that gaining a thorough understanding of advanced foreign theories and effective teaching is crucial to keeping up with the country's rapid advancement and growth of its higher education system and the continuous intensifying and improved performance of the reform of education and teaching activities. College and university music programs often include piano teaching (PT) as a required curriculum component. As a result, the job it does in the classroom is crucial to developing modern musical literacy and understanding. This article shows how to regulate the classroom tempo by utilizing multimedia instructional tools, how to pique students' interest in learning, and how to use multimedia tools to improve the quality of piano instruction. We used a logic programming system to design a piano teaching platform. It is used to analyze the knowledge of piano learners and manipulate their interference. By gathering user behavior from different Internet distribution platforms and evaluating the feature vector by the function space created by the pertinent evaluation metrics, the analysis system is also utilized to assess some instructional techniques' online public thought assessment. The system's accuracy is 96%, indicating a successful teaching assessment. The system's value evaluation paradigm makes it possible to comprehend user behaviors precisely and apply them to other disciplines.

Keywords: Piano Teaching, Education platforms, Multimedia technology, and Logic Programming.

Research Highlights
- The rapid development of China's higher education system and the ongoing improvement in the reform of education and teaching activities have led many to believe that effective teaching and a solid grasp of advanced foreign theories are essential for the country's educators to keep up with the times.
- It is common for piano instruction (PT) to be a necessary component of music curricula at colleges and universities.
- Using multimedia educational technologies, this article demonstrates how to control the class pace, engage students in the learning process, and enhance the quality of piano instruction.
- The analytic system is also used to evaluate the online public thinking assessment of certain instructional strategies by collecting user behavior from various Internet distribution platforms and comparing the feature vector to the function space generated by the relevant evaluation metrics.
- A successful teaching assessment was indicated by the system's accuracy rate of 96%. We can understand user actions exactly and apply them to other disciplines thanks to the system's value evaluation methodology.

1. INTRODUCTION
Technology has improved music instruction, making it more exciting and available for students. For instance, students now often use Sibelius and Finale, two music production programs, to digitally notate and compose music. For students to experiment with various musical aspects and get immediate feedback, the tools make it simple to alter and replay musical concepts. Also, to provide students access to different musical genres and styles, internet platforms like YouTube and Spotify have developed into essential tools for music instructors. Teachers may provide students with a more dynamic and exciting learning opportunity that fosters the development of their musical talents and enjoyment by using technologies in the study of music [1]. Figure 1 represents the Structure of the Piano education platform.

1 School of Music, University of Queensland, Brisbane, Australia, 4072
2 School of Music, Philippine Women's University, Manila, Philippines, 1004
3 Tasi Chi-Kun Academy of Music, Minjiang University, Fuzhou Fujian Province, China 350108
Xueying Liu: 1728@mju.edu.cn

Copyright © JES 2024 on-line: journal.esrgroups.org

2445
The audience will determine the complexity and kind of material. The platform's learning goals are to be determined by the learning objectives. The technique can include studying virtual piano accompanying methods, comprehending music theory, or honing in on a few tunes. Plan the material that will be included on the platform after the target audience and learning goals have been determined. The method could consist of audio and video instruction, sheet music, practice drills, and quizzes [2] [3]. Multimedia-assisted teaching is a powerful tool that can significantly enhance the effectiveness of vocal music skills teaching. By leveraging multimedia resources such as audio, video, and interactive elements, teachers can create a dynamic and engaging learning experience that helps students understand and appreciate music more intuitively and more immersively [4]. Multimedia teaching also helps to break down the traditional barriers and limitations of music teaching, making it more accessible and engaging for a broader range of students. By leveraging electronic courseware and other multimedia resources, teachers can create a more diverse and interactive learning experience that accommodates different learning styles and preferences [5]. Multimedia-assisted instruction not only improves student learning but also offers instructors various advantages. Simplifying the instructional material and making it more approachable for students may reduce the time and effort needed to plan and deliver classes. Overall, multimedia-assisted teaching is a successful and cutting-edge approach to music education that may help students learn music more dynamically and engagingly by overcoming the drawbacks of conventional teaching techniques [6]. The efficiency of students' instruction in vocal music abilities is increased by the prospective teachers' greater simplicity and specificity in multimedia-assisted music education. The multimedia music education method may still synthesize and deconstruct sounds when creating music. Teachers can support their pupils as they develop a more profound and intuitive knowledge of music [7]. Creating an autonomous accompaniment system for an online piano lesson audio database necessitates a multidisciplinary strategy using cutting-edge technologies like big data, blockchain, and IoT. Using the technologies, teachers may develop an advanced and successful instructional platform that offers students tailored learning experiences, real-time feedback, and increased piano accompanying abilities [8]. As we proposed, the design of multimedia instruction may be implemented with logic programming. These techniques provide a keyboard platform that aids in developing musical abilities.

The Research determined the use of new media and its function in supporting music instruction in colleges, and universities demonstrate that most students have a good attitude toward and are extremely interested in the new media teaching assistant technique. At all levels, students' collaborative skills were improved [9]. The case study evaluated the questionnaire, and the interview was used to examine the present piano training, academic instruction, and creative [10]. The article was devised when new musical ideas need to be handled; the infrastructure that enables HoloMusic XP has been created and intended to scale. Using mixed reality, visual metaphors may help simplify complex musical ideas while reducing the often high learning curve for beginning students. Teachers and students have assessed the system in real-time to gauge its usefulness and efficacy. After the trials, there has been an improvement in student motivation and general comprehension of the multimedia depiction [11]. The Research enhanced the current educational system often uses mobile teaching platforms due to the Internet's fast expansion to enhance teaching outcomes [12]. The article created a mobile teaching platform for vocal piano accompaniment courses based on feature comparison to address the mobile teaching impact of vocal piano accompaniment courses [13]. According to the findings, the mobile teaching platform in the article's
A simple application procedure has a 1.9-second latency, a quick reaction time, a low memory occupancy rate, and a high level of stability, which could significantly enhance the actual teaching impact [14]. The article examines the primary topics and fundamental tactics of piano educational restructuring in colleges underneath the idea of superior learning to enhance students' Ideological and Moral cultivation, foster healthy growth as learners' body and mind, and enhance their ability to create and undertake on the piano [15]. The case study indicated the primary components of the reform, which include the philosophy of education, the role of the teacher, instructional strategies, curricular framework, hands-on learning, and teaching assessment [16]. The article demonstrated a new phase of learning and technological advancement and a new phase in education development [17].

The Research established that the traditional classroom instruction and learning approach for vocal music performance is being challenged by virtual reality, a critical enabling technology for learning design [18]. The article used computer technology and developed several high-simulation, multi-perceptual dimension virtual reality systems. The systems build a complete data underpinning mechanism, produce multi-modal scene models, and perform the necessary optimization processing on the scenario model [19]. The article simulated the main objective of the instruction platforms, which is to simulate a genuine atmosphere using a combination of hardware and software to teach students how to use it; the platform should be very similar to the basic tools and equipment and should strive for the best visual and tactile experience [20]. The article suggested that Piano instruction has improved because of the Multimedia-based piano teaching Model. The article uses multimedia technologies to augment and enhance traditional piano training [21]. The Research examines by starting the possibilities and attributes of the intelligent piano are described. To prefer a method for finding a neural which was employed [22]. The Research examines by gathering user network behavior from various Online distribution platforms and evaluating the feature vector by the component space created by the relevant evaluation indicators; the cluster analysis system is also used to analyze the online public opinion assessment of the three teaching techniques [23]. The article aimed at Artificial Fish Swarm Algorithm, an IAFS with mutation operator, dynamic vision, and step size, is claimed to have several drawbacks. The Back Propagation Algorithm network uses the improved Artificial Fish Swarm Algorithm (IAFS) to address the drawbacks of the BP network. The Study has conducted a thorough and systematic investigation to confirm the usefulness and viability of IAFS-BP applied to quality evaluation of intelligent piano instruction in the environment of the IoT and multimedia [24]. The case study showed statistically significant improvement in Blended Piano Teaching Model. The Study concluded that the Blended Piano Teaching Model was an excellent teaching instrument for teaching piano to music students not majoring in piano. Because universities should consider using the Blended Piano Teaching Model as one of their piano teaching techniques [25].

The statement implies that the Research has improved our understanding of better deploying multimedia education for the piano platform. The following might be among the Study's particular passages:

1. This study aims to improve the effectiveness of multimedia teaching for piano by applying a logical programming approach and evaluating its impact.

2. To evaluate the effectiveness of our approach, we conducted a series of experiments with a group of piano learners. We compared their performance and satisfaction with those using a traditional multimedia platform.

2. MATERIALS AND METHODS

Increases in both demand for and supply of piano teachers reflect this trend. More and more people are becoming aware of the wealth of modern technology and online options available for piano education. Many different types of online piano lessons in multimedia format are readily available nowadays. The popularity of this expansive and varied approach to education continues to rise. An intelligent piano connected to the internet might be used to teach piano online, revealing the instrument's intelligence to students as they progress. Here, we determine the logic programming approach to piano instruction. Data normalization techniques and performance evaluation techniques are provided as part of the preparation phase. Figure 2 depicts the Structure of the proposed method.
2.1 Data collection
The experimental data source is Musical Instrument Digital Interface notes (MIDI notes), which include time, rhythm, sound effects, chords, velocity, and other characteristics. Because many piano instruction circumstances may be utilized for four levels of complexity and vast music networking websites, it also gives a virtual image of four levels of complexity (simple, beginner, intermediate, and advanced). Four hundred note groups are gathered on the major music portal eight notes to more effectively assess the computation scalability and apply it to the learning experience. It is made up of four sets of complexity-level data, each of 100 MIDI. The distinction between nine sections of complexity data is known as "Nine S," while the distinction between four groups of difficulty data is known as "Four S."

2.2 Data pre-processing
To prevent the issue of data imbalance, it is necessary to do a quantitative assessment and normalize the received data before processing the gathered MIDI spectrum data. Due to the high temporal resolution of the note files generated by a MIDI keyboard, it is only sometimes necessary to show notes in their exact physical locations. When looking to maximize results from a data set, the Min-Max normalization procedure is used. In order to rescale characteristics or parameters in a dataset to a similar range of values, a typical data preparation approach is known as featured scaling, often referred to as min-max normalization. This strategy is extremely helpful when dealing with characteristics that have vastly varied scales or measurement systems. The fundamental goal of max-min normalization is to change the original data to lie inside a predetermined range of values, usually between 0 and 1. To achieve this, divide the result by the feature's content after removing the feature's minimum amount.

The min-max normalizing formula is as follows:

$$P_{norm} = \frac{P_j - P_{min}}{P_{max} - P_{min}}$$

Where p is the starting point, p' is the normalization value, min (p) is the value at which p is at its lowest, and max (p) is the value at which it is at its highest.

Min-max normalization can also be modified to accommodate a wider spectrum of values, such as -1 and 1.

2.3 Multimedia-based piano teaching model
New pedagogical methods may be established, and instructional capacities may be enhanced with the rise of multimedia technology teaching as a cutting-edge style of instruction. Research into the intersection between piano playing with the Study of complex networks and multimedia technologies has been considerable. This novel method of instruction employs multimedia and network tools to let students progress at their own pace while teaching to play the piano. In this Research, the information of the courses is digitized and expressed using logic programming, and the systems that make the info created available are preserved using programming and primary learning techniques with or without the use of the Internet. More advanced logic programming education may benefit from the integration of these two techniques with traditional piano teaching.

Micro-lecture videos, distance learning, and intelligent companion training technology are all examples of online teaching that supplement traditional classroom instruction. When there is a big difference between the intensity of the music and the background, such as when the instruments are dark, and the room is bright, it can be tiring on the eyes (similar to using a smartphone in the dark). The piano keys and sheet music can’t be seen without a piano light, such as an LED piano light. The piano game mode uses LED indicators to keep kids interested in practicing. In contrast to the dreariness of traditional piano lessons, students' musical awareness and motivation to learn may improve if they study music in a positive and upbeat environment. Smart devices may soon be able to connect the intelligent piano to piano-learning app software, opening up new opportunities for human-piano interaction. Musicians who don't have access to expensive MIDI gear still have the option of using the Garage...
Band software to compose their songs. MIDI signals allow communication between electronic musical instruments, computers, and samplers. MIDI is a standard for interfacing musical instruments and other electronic equipment. The MIDI controllers or computer may also play the role of a violin, flute, or piper by using sound samples of such instruments. After you're comfortable with the controls, you can play them into the song in a way that sounds great. Bright pianos and online piano studios have video lessons ready for you to watch whenever you want. Networked voice and video conferencing between educators and students is a possibility. Instructors and students engage with one another through modeling, conversation, and images.

2.4 Application method of multimedia technology

A. Integrating Technology into Time-Honoured Piano Lessons
For instance, the piece "Stand by Me" is broken up into four parts. B-box components might be inserted simultaneously to improve the feeling of rhythm. To emphasize the supremacy of digital music, the electronic sound from cell devices can also be incorporated when practicing. Teachers’ primary responsibilities in teaching content are to create course PowerPoint presentations, use online resources to incorporate methods, record instructional videos, reflect the most critical and challenging aspects of this activity in the instructional videos, encourage learners to practice, and provide comments in class. Teachers' primary teaching strategies include assertion, expertise summary, and comparing. The pupils are formally evaluated during the fourth week. Each group's practice outcomes are evaluated, and films are taken. Teachers identify weaknesses, provide pupils advice for development, and accomplish educational objectives by analyzing the completion results of each group.

B. Creating PowerPoint Presentations for Classes
The PPT should clearly represent the context of the repertoire, the presentation of the vocabulary, the evaluation of the significant and challenging sections, etc., to aid the students in comprehending the work: main ideas: The song "Stand by Me" was written in English. There is a beautiful harmony effect created by the central vocal part and the portion below it working together. Simultaneously, b-box components can be integrated to achieve a state of harmonic unity between all elements. The bass line, which must maintain a steady beat to convey the piece's rhythmic emphasis, comes first. As the accompaniment begins, the singer must focus on maintaining a steady rhythm and catching the breath for the triplet notes in the cross bars. The level of the supporting vocals should be carefully balanced after the layered vocals arrives, and the singers should work on harmonizing their voices as much as possible.

C. Responses in the Classroom
Each group will use videos as a learning tool to report on the simulated outcomes to the class. This connection helps educators understand their students' learning environments so they may better tailor their instruction accordingly. After the report shows that the student's learning has largely met the criteria, they can go on to delve more deeply into the material and add electronic audio cooperation to the four sections, such as musical instruments like drum kits, to further enhance their performance. At this stage, suitable music software may be selected for teamwork. If we use the piano as an example, the timbre of a real piano will have undertone properties. However the timbre of a virtual piano is not clear. Training application development should help make electronic tones sound more natural. The program on your phone can use the GarageBand drums set, and you can pick the more productive team to practice with. To heighten their understanding of the importance of their involvement, students analyze the nuances among 4 vocals and four singing accompanied by percussion.

D. Results statement
The accomplishment report is mostly split into two sections. The accomplishment report for this task is the first component; it is typically finished during the fourth week of the Study. The performance report for the final concert is the second part. The final evaluation is completed after the instructor assigns each group to report the outcomes of various repertoires based on the full impact of each unit on all the repertoires. To sum up, every link thoroughly demonstrates the use of digital media in the flipped learning method of solfeggio and ear training. Digital technology is required to support the completion of the ultimate teaching objective, whether in effects resulting in planning or the transmission of outcomes. The effectiveness and interest of pupils' learning can be increased by using multimedia teaching techniques. Following class, students may communicate live with professors while playing the piano at home, suppose to modern technology.

2.5 Factors Affecting the Efficiency of Multimedia-Assisted Piano Teaching
Creating multimedia-assisted piano instruction is a challenging, methodical undertaking directly tied to pertinent theoretical Research, technical development, teaching practice, and other factors. Several elements, including the knowledge management of instructors and students, the caliber of the teaching materials, and the instructional support platform, affect how effective it is as a teacher. Regarding the style of instruction, techniques, and strategies of education, media piano instruction is currently in the exploratory phase. Thus, it offers a variety of linkages for developing media piano instruction through various techniques to examine the elements impacting the impact of multimedia teaching. To enhance the caliber of multimedia instruction, valuable knowledge is crucial.

2.6 Logic programming
Music is another field where logic programming may be put to use. Logic programming may describe musical knowledge and be used to create or evaluate music in this setting. By employing statements or rules, music's logic programming may be used to express musical conceptions and their relationships. Utilizing a logic programming system to reason about and alter representations of musical chords, scaling, and rhythmic as logical statements is possible. This can aid in the analysis and comprehension of music and the generation of new musical ideas. Generating or analyzing melodic patterns using constraints is another application of logic programming in music. Harmonic, rhythm, and melodies are only some of the musical qualities that may be constrained using this method. A logic programming system may compose or analyze melodic patterns based on these parameters. Applying logic programming to the world of music is possible using several existing methods and tools. The Open Music system, for instance, offers a visual development platform for music production and analysis utilizing a wide range of development methodologies, including logic programs, such as Prolog and its variations.

It is good knowledge. However, that logic and logic programming are not the same thing. Many nonlogical additions are required to make logic programs practical. That's why logic programming languages are typically another group of programming languages in beginner textbooks. While some logical history might be covered, instruction on using logic to write bug-free code could be much better. "logic programming" may also describe translating analytical requirements into machine-readable code. Starting with a first-order logic description, an ideology translation chain is applied to generate an executable logic program. Although a lot is written about this strategy in the Research, I need to learn about a single book that lays out this strategy for someone learning a language like Prolog to create efficient and accurate programs. This book needs to be linked. Deville lays forth a process for building reliable logic programs from scratch. Although Deville uses Prolog as an example language, the methods she explains are universal and may be applied to any logic programming language.

The methodological framework has three components. Initially, the program's pre- and post-conditions are laid down in a nonlogical specification. Second, a solid first-order logic definition is derived from the program structure. The accuracy of the specification is established by induction, and its soundness is then leveraged to facilitate its translation into a runnable Prolog program. Deville provides advice on how to write specifications that will help you pick an appropriate induction parameter. He also explains methods for translating a logic design into a similar but perhaps better practical description. The user then adds a series of modifications to the logic program while keeping accuracy to improve performance. It is now OK to utilize nonlogical operations such as "cut," so long as they are implemented in a fashion that does not compromise accuracy. The author presents requirements for soundness in Prolog programs and provides changes that preserve correctness.

Logic programming can only process symbolic data (such as symbols and permutations of characters in a list). Constraint logic programming is a generalization of logic programming that adds effective computational problem-solving techniques to logic programming.

The idea of logic variables is broadened in the logic programming paradigm. For instance, finite domain variables can stand in for unknown numbers, and limited set variables can do the same for strange sets. Similar to how logic parameters enable computation with unknown symbolic values, variables in the finite domain provide numerical computation with unknown weights. Constraints are the relationships between these elements. The environment of a variable is the set of values that may be assigned to it within its limited scope. An example of a constraint solver is an internet search engine.

The two equations below are examples of what a logic program may say:

\[p + q = 8 \] \hspace{1cm} (2)
\[p + 1 = q \] \hspace{1cm} (3)

Where the logic programming solver has determined that the values of \(p \) and \(q \) are \((p=3, q=5)\), respectively.

The subject of machine learning, known as "logic programming," uses the logic programming language for its examples, knowledge, and hypotheses. When presented with both sets of samples and context information, an ILP system can generate a view that uses the data to categorize the instances into positive and negative categories. Discoveries that fit the notion we're trying to grasp are put in the collection of practical examples, while those that don't are placed in negative instances. As a logical program, the background information incorporates instance-specific information (data only relevant to a particular model) and broad subject expertise. An ILP system takes the predicates defined in the prior knowledge. It utilizes them to specify the predicate true in the affirmative and false in the negative.

Here we consider the simple domain of points

\[\text{points}(o1, 0, 1). \text{point}(o3, 1, 1) \] \hspace{1cm} (4)
\[\text{point}(o3,3,1). \text{point}(o4, 2, 2) \] \hspace{1cm} (5)
\[\text{point}(o5, 4, 3). \text{point}(o5, -1, 2) \] \hspace{1cm} (6)
\[\text{point}(o6, 2, 0). \text{point}(o7, 0, 2) \] \hspace{1cm} (7)

In addition, please include the user-supplied definition of "background information" in the database:

\[\text{line}(O1, O2, L, M) : = \] \hspace{1cm} (8)
\[\text{point}(O1, W1, W1). \text{point}(O2, = W2, Z2) \]
1. Electrical Systems 20-5s (2024): 2445-2456

\[Y_2 \leq Y_1, L = (Z_2 - Z_1)/(Y_2 - Y_1) \]
(9)

\[N = Z_1 - W_1 \times L \]
(10)

The positive sets are

\(\text{collin}(o_1, o_2, o_3). \text{collin}(o_2, o_4, o_5) \)
(11)

\(\text{collin}(o_7, o_6, o_1). \text{collin}(o_8, o_6, o_4) \)
(12)

The negative sets are

\(\text{collin}(o_1, o_4, o_7). \text{collin}(o_7, o_4, o_5) \)
(13)

\(\text{collin}(o_6, o_1, o_5) \)
(14)

Based on these parameters, the system generates a proposed meaning for the predicate Collin:

\(\text{collin}(B, A, D) : \)
(15)

In summary, logic programming offers a robust and adaptable method for composing and analysing music, as it can be used to describe and manipulate complex musical ideas and connections clearly and straightforwardly.

\[N_i = W_i \times Z \]
(10)

3. RESULTS

The parameters of the logic programming system are a crucial step in ensuring that it can meet the desired prediction criteria. These parameters include the weights assigned to different rules and features, the threshold values for decision-making, and the complexity of the model. Balancing these factors is essential to achieve optimal accuracy, precision, and computation time performance.

Accuracy

Accuracy is a performance metric that measures the overall correctness of the predictions made by the system. In our logic programming-based platform for piano teaching, accuracy reflects the system's ability to correctly identify the learners' needs and preferences and provide them with appropriate feedback and guidance. Our method achieved high accuracy values, indicating that it can make reliable and informative predictions. Our findings suggest that the accuracy of our logic programming-based platform is high enough to support practical applications in piano teaching and that it can be further improved by incorporating more diverse and representative data and by optimizing the rule set and feature selection.

\[\text{Accuracy} = \frac{(\text{True positives} + \text{True negatives})}{(\text{True positives} + \text{True negatives} + \text{False positives} + \text{False negatives})} \]
(16)

Figure 3: Accuracy of proposed and existing method

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Technology</td>
<td>29.8</td>
</tr>
<tr>
<td>Online Teaching</td>
<td>22.8</td>
</tr>
<tr>
<td>Mixed Teaching</td>
<td>33.9</td>
</tr>
<tr>
<td>Logic Programming</td>
<td>42.8</td>
</tr>
</tbody>
</table>

Table 1: Comparison of Accuracy

Figure 3 displays the accuracy of the proposed and current methods. It has been shown that the projections concerning student file management produced by the technique that is suggested provide more accurate findings when compared to the one that is currently being employed. The degree of accuracy is often expressed as a percentage of the total. Both the existing methods and the one that is being proposed include warning signs of the potential for inaccurate predictions. Both systems are aware of this danger. The suggested approach, logic
programming, delivers an accuracy of 42.8%, compared to 29.8% for information technology, 22.8% for online instruction, and 33.9% for mixed teaching. The recommended approach, therefore, has the most excellent accuracy rate. The proposed approach accuracy is shown in Table 1.

Precision

Precision is a performance metric that measures the fraction of true positives among the system's optimistic predictions. In the context of our logic programming-based platform for piano teaching, precision reflects the system's ability to provide accurate and relevant feedback to the learners. Our method achieved high precision values, indicating that it can make informative and helpful predictions. To improve the precision of our system, we focused on identifying the most relevant and informative features and rules for piano learning and teaching. We also fine-tuned the weights and threshold values of the authorities to balance the trade-off between false positives and false negatives.

\[
\text{Precision} = \frac{\text{True positives}}{\text{True positives} + \text{False positives}} = \frac{TP}{TP + FP}
\]

Figure 4: Precision of the proposed and existing method

The precision of the proposed and existing approaches is shown in Figure 4. It has been shown that compared to the method presently in use, the forecasts about student file management provided by the recommended strategy yield more precise conclusions. Precision levels are often reported as a percentage of the total. There are indicators of the possibility of erroneous forecasts in both the current methodology and the one that is being suggested. Both systems recognize this threat.

On the other hand, the proposed method, logic programming, has a precision rate of 43.6% as opposed to 15.4% for information technology, 33.8% for online education, and 20.8% for hybrid teaching. Thus, the strategy that is suggested has the highest Precision rate. Table 2 displays the proposed procedure's precision.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Precision (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Technology</td>
<td>15.4</td>
</tr>
<tr>
<td>Online Teaching</td>
<td>33.8</td>
</tr>
<tr>
<td>FMixed Teaching</td>
<td>20.8</td>
</tr>
<tr>
<td>Logic Programming</td>
<td>43.6</td>
</tr>
</tbody>
</table>

Computation time

Computation time is essential in designing and evaluating any predictive system, including our logic programming-based platform for piano teaching. Our experiments measured the time required to predict each input instance. Our results suggest that the computation time of our logic programming-based platform is reasonable for practical use, especially considering the benefits it provides in terms of adaptive and personalized learning. These techniques helped us reduce the computation time by several orders of magnitude without sacrificing prediction.
Figure 5: Computation time of proposed and existing system

Figure 5 shows the calculation time for the recommended strategy. Comparatively, the proposed approach, logic programming, only achieves a calculation time of 17.6%, whereas information technology, online instruction, mixed instruction, and teaching accomplish computation time of 28.6%, 18.2%, and 39.08%, respectively. The suggested technique is more effective than the one already in use. Table 3 displays the calculation time for the recommended strategies.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Computation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Technology</td>
<td>28.6</td>
</tr>
<tr>
<td>Online Teaching</td>
<td>18.2</td>
</tr>
<tr>
<td>Mixed Teaching</td>
<td>39.08</td>
</tr>
<tr>
<td>Logic Programming</td>
<td>17.6</td>
</tr>
</tbody>
</table>

Recall

The recall is a performance metric that measures the fraction of true positives among all actual positive instances in the dataset. In the context of our logic programming-based platform for piano teaching, recall reflects the system's ability to identify and address the learners' needs and preferences, even if they are not explicitly stated or apparent. Our method achieved high recall values, indicating that it can make comprehensive and inclusive predictions.

\[
\text{Recall} = \frac{\text{FN}}{\text{FN} + \text{TP}}
\]

(18)
Figure 6: Recall of proposed and existing method

Figure 6 depicts the recall of the proposed and current methods. It has been shown that the projections concerning student file management produced by the technique that is suggested provide more accurate findings when compared to the one that is currently being employed. The degree of recall is often expressed as a percentage of the whole. Both the existing methods and the one that is being proposed include warning signs of the potential for inaccurate predictions. Both systems are aware of this danger. The suggested technique, logic programming, yields a recall rate of 45.8%, compared to 36.4% for information technology, 38.3% for online instruction, and just 28.7% for mixed teaching. The recommended approach, therefore, has the most excellent accuracy rate. The proposed procedure recall is shown in Table 4.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Recall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Technology</td>
<td>36.4</td>
</tr>
<tr>
<td>Online Teaching</td>
<td>38.3</td>
</tr>
<tr>
<td>Mixed Teaching</td>
<td>28.7</td>
</tr>
<tr>
<td>Logic Programming</td>
<td>45.8</td>
</tr>
</tbody>
</table>
Public opinion-related logical programming Method
They are conducting surveys or focus groups with stakeholders involved in piano teachings, such as teachers, students, parents, and music industry professionals. This may include using mixed-methods approaches to gather qualitative and quantitative data on their perceptions and preferences regarding different teaching methods and their outcomes. A survey or focus group with piano teachers and students with experience using or learning with logical programming-based platforms. This may involve using purposive sampling techniques to identify participants who are familiar with these methods and are willing to share their opinions and feedback. Figure 7 represents the distribution results of public opinion.

Figure 7: Distribution results of public opinion

![Figure 7: Distribution results of public opinion](image)

Table 5: Comparison of Public opinion distribution

<table>
<thead>
<tr>
<th>Methods</th>
<th>Public opinion Distribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Technology</td>
<td>22.4</td>
</tr>
<tr>
<td>Online Teaching</td>
<td>28.7</td>
</tr>
<tr>
<td>Mixed Teaching</td>
<td>34.5</td>
</tr>
<tr>
<td>Logic Programming</td>
<td>48.6</td>
</tr>
</tbody>
</table>

Comparatively, the proposed approach, logic programming, only achieves a Public opinion of 48.6%, whereas information technology, online instruction, mixed instruction, and teaching accomplish computation time of 22.4%, 28.7%, and 34.5%, respectively. The suggested technique is more effective than the one already in use. Table 5 displays the comparison of Public opinion distribution.

4. CONCLUSION
The ability to fully engage students' passion and initiative is a hallmark of multimedia teaching's adaptability, nonlinear Structure, and blending of various senses. By examining student enrolment for multimedia piano programs and the course's potential, this article explores the current state of piano instruction. It gains insight into the market for teaching with multimedia technology. Logic programming was utilized concurrently to ensure the survey's credibility. System performance was measured using various metrics, including accuracy, precision, computation time, and recall rate. The system extracted and analyzed the assessment of multimedia upward piano lessons on the website. There are several ways in which both students and teachers may profit from a logically-designed multimedia platform for teaching musical accompaniment. A logic programming system can aid students in learning piano accompaniment by describing musical knowledge and connections as logical assertions and rules and then generating or analyzing melodic patterns that fulfill those restrictions. The system analyses student achievement and offers feedback and suggestions to teachers based on these findings. This allows teachers to design individualized lesson plans and activities for each student. In conclusion, the system we have provided has the potential to present a powerful and adaptable method of music instruction, furnishing students with the means to cultivate their abilities and imagination in a fascinating and stimulating setting.
Reference

[16] Zhang, H., Exploration of College Piano Teaching Reform under the Ideas of Quality Education.