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Abstract: - Machine Learning and Deep Learning Algorithms have been explored widely to identify potential avenues 

to optimize future generation IoT networks. One such area happens to be a data driven model for initiating handover among 

multiple access techniques such as FDM, OFDM, OTFS and NOMA. The amount of data which is generated for variable 

channel conditions typically in IoT applications is enormously large and hence conventional rule based mechanisms do not 

render high accuracy in handover problems in IoT and wireless Ad-Hoc networks. With the increasing data handling ability 

of machine learning and deep learning models, handover based on various channel metrics such as fading factor, received 

SNR and error rates can be implemented. This rules out the need for conventional handover mechanisms for software defined 

networks. Multiple machine learning and deep learning models have been explored thus far for initiating handovers for IoT 

applications, which are explored and discussed in this paper. The salient features of each of the approaches has been 

highlighted along with identifying potential research gaps, thereby paving the path for future research  the domain. 

 

Keywords: Internet of Things (IoT), Machine Learning, Handover, Quality of Service, Future Generation Wireless Systems, 

Bit Error Rate. 

 

1. INTRODUCTION 

The Internet of Things (IoT) represents a transformative paradigm that connects physical devices, sensors, and 

systems to the internet, enabling seamless data exchange and automation. IoT networks comprise diverse devices 

such as smart home appliances, wearables, industrial sensors, and connected vehicles. These devices communicate 

using wireless technologies like Wi-Fi, Zigbee, LoRaWAN, and 5G, supporting applications in healthcare, 

transportation, agriculture, and smart cities. The growing integration of IoT devices into daily life has led to a 

significant increase in the complexity of network architectures. As devices move between different locations, 

ensuring continuous connectivity becomes a critical challenge, particularly in dynamic environments like smart 

cities or vehicular networks [1]. 

 

 

Fig.1 The IoT Framework 
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Figure 1 depicts the IoT framework. Data transmission is the cornerstone of IoT networks, enabling devices to 

exchange information with each other and centralized systems. IoT devices collect vast amounts of data through 

sensors, which are then transmitted to cloud servers or edge devices for processing and analysis [2]. The efficiency 

and reliability of data transmission directly impact the performance of IoT applications, from real-time monitoring 

in healthcare to predictive analytics in smart factories. This process involves a combination of wired and wireless 

communication protocols designed to meet the specific requirements of IoT systems, such as low power 

consumption, minimal latency, and secure data handling [3]. 

IoT networks rely on various communication technologies, each suited to specific applications and 

environments. Short-range protocols like Bluetooth, Zigbee, and Wi-Fi are commonly used for home automation 

and wearable devices, providing high-speed data transfer over limited distances. On the other hand, long-range 

protocols like LoRaWAN, Sigfox, and cellular networks (e.g., 4G, 5G) cater to industrial IoT and smart city 

applications, where devices are distributed over wide areas. The choice of technology depends on factors such as 

data rate, power efficiency, range, and network scalability [4]. For instance, low-power wide-area networks 

(LPWANs) are ideal for battery-operated devices that require infrequent data transmission over long distances. 

IoT data transmission faces several challenges due to the diverse and dynamic nature of IoT ecosystems. 

Bandwidth limitations, signal interference, and network congestion can hinder the smooth flow of data, especially 

in environments with a high density of devices. Power constraints in IoT devices also necessitate the use of energy-

efficient transmission techniques, as frequent data communication can drain batteries quickly [5]. Furthermore, 

ensuring data integrity, confidentiality, and availability during transmission is critical to addressing security 

threats such as eavesdropping, data tampering, and denial-of-service attacks. These challenges demand robust 

transmission protocols and adaptive network management strategies [6]. 

2. DATA OPTIMIZATION AND HANDOVER 

Typically, wireless channels in IoT networks exhibit a frequency dependent nature depicted in figure 2. 

 

 

Fig.2 Frequency dependent nature of wireless channels. 

The nature of wireless channels can be represented as [7]: 

𝑯 = 𝒈(𝒇, 𝒕)                                                  (1) 

Here, 

𝐻 denotes the frequency response of the channel 

𝑔 denotes the governing function 

𝑡 denotes the time variable. 
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𝑓 denotes the frequency variable. 

Due to the frequency ad temporal variations, the signal strength received at the IoT gateway may often be 

extremely fluctuating as depicted in figure 3. 

 

 

Fig.3 Typical received signal strength at the IoT gateway 

Due to the variability in the signal strength, the quality of service (QoS) degraded making is necessary to employ 

handover among multiple access techniques Handover, also known as handoff, refers to the process of transferring 

an ongoing network connection from one access point or base station to another without interruption. In IoT 

networks, handover ensures that devices maintain seamless communication as they move across network 

boundaries [8]. Unlike traditional cellular networks, IoT devices exhibit unique challenges due to their varying 

power constraints, diverse protocols, and differing data transfer requirements. Efficient handover mechanisms are 

essential to guarantee low latency, minimize packet loss, and support uninterrupted services in scenarios such as 

connected cars transitioning between cell towers or wearable health monitors moving across Wi-Fi zones [9]. As 

IoT networks expand, the demand for reliable and efficient handover mechanisms becomes increasingly critical. 

Inefficient handovers can result in service disruptions, increased energy consumption, and degraded user 

experiences, particularly in latency-sensitive applications like remote surgery or autonomous driving. 

Additionally, the heterogeneous nature of IoT networks necessitates advanced algorithms capable of handling 

transitions across different wireless technologies. Factors such as network load, signal strength, and device 

mobility patterns must be considered to optimize handover processes. Addressing these challenges ensures not 

only the reliability of IoT services but also enhances their scalability and user acceptance [11]. 

The ongoing development of IoT networks highlights the need for innovative handover solutions tailored to 

the specific requirements of IoT applications. Emerging technologies like artificial intelligence (AI), edge 

computing, and 5G are pivotal in shaping advanced handover strategies. AI-driven predictive models can 

anticipate mobility patterns and optimize network resource allocation, while edge computing can reduce latency 

by processing data closer to the device. However, challenges such as security vulnerabilities, interoperability 

issues, and the integration of sustainable energy-efficient methods remain areas for further research. Solving these 

challenges will pave the way for robust, future-proof IoT networks capable of supporting the evolving digital 

ecosystem [12]. Advancements in communication technologies and network optimization techniques are helping 

to overcome data transmission challenges in IoT networks. Adaptive data compression, intelligent routing 

algorithms, and edge computing solutions are being implemented to enhance transmission efficiency and reduce 

latency. For instance, edge devices can preprocess data locally, transmitting only relevant information to the cloud, 

thereby reducing the load on communication channels. Additionally, emerging technologies such as 5G and 6G 

promise higher bandwidth and lower latency, enabling seamless data transmission for mission-critical applications 

[13]. Integrating artificial intelligence (AI) and machine learning (ML) into network management can further 
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optimize data flow, predict traffic patterns, and ensure efficient resource allocation. While several handover 

protocols can be implemented for IoT Networks, yet the most common ones can be [14]: 

Between multiple access techniques (NOMA, OFDM, OTFS etc.) 

Between (device to device: D2D) and Cellular modes 

Between Wifi and  WiMax etc. 

The choice of the handover needs to be application specific and the features should be chosen accordingly. 

3. MODELS FOR IMPLEMENTING HANDOVER 

The future of IoT data transmission lies in the convergence of advanced technologies such as AI, blockchain, 

and quantum computing. AI-based algorithms can predict network conditions and optimize transmission paths, 

while blockchain ensures secure and decentralized data exchange [15]. As IoT devices proliferate, the 

development of standardized protocols and interoperable systems will become increasingly vital. These 

innovations will enable IoT networks to handle massive data volumes efficiently, unlocking their full potential 

across diverse industries. The most commonly used data driven machine learning models for IoT handover are 

presented next [16]: 

Machine learning models can be trained using vast amounts of network data, such as user mobility patterns, 

historical handover events, and network conditions [17]. By analyzing this data, ML algorithms can learn to 

predict when a handover is necessary and which target cell would provide the best service quality. Supervised 

learning techniques, such as decision trees, random forests, and neural networks, can be employed to classify the 

optimal handover timing and target base station. Reinforcement learning, on the other hand, can be used to develop 

intelligent agents that make handover decisions based on real-time network conditions, optimizing long-term 

network performance [18]. 

 

Fig.4 Machine Learning Assisted Model for Handover 

Figure 4 depicts a generic machine learning neural model for handover. In this model, the Bit Error Rate (BER) 

is to be estimated by the model based on channel metrics. Several types of machine learning techniques have been 

applied to optimize handover in wireless networks [19]. Supervised learning methods such as support vector 

machines (SVMs) and decision trees are commonly used to predict the optimal handover time based on labeled 

training data [20]. Unsupervised learning techniques, such as clustering algorithms, help in identifying patterns in 

user mobility and network usage, enabling more efficient handover decisions. Deep learning models, such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), can process more complex 

datasets, including time-series data, and improve handover prediction accuracy in rapidly changing environments 

[21]. Additionally, reinforcement learning has gained attention for its ability to optimize handover strategies by 

learning from real-time interactions with the network environment [22]. 
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For instance, if the handover is to be initiated between multiple access techniques such as OFDM and 

NOMA, the following condition can be employed: 

𝑖𝑓 (𝐵𝐸𝑅𝑁𝑂𝑀𝐴 < 𝐵𝐸𝑅𝑂𝐹𝐷𝑀) 

{ 

Choose NOMA as the transmission technique 

𝑒𝑙𝑠𝑒  

{ 

Fall back to OFDM 

} 

In this case, the multiple access technique NOMA has been chosen as the primary access techniques while OFDM 

has been chosen to be the automatic fall back option. 

4. PREVIOUS WORK 

This section presents the most recent research in the domain with the identified research gaps to bolster future 

research. 

Pranato et al. [23] proposed that by utilizing a Radio Intelligent Controller (RIC), Open Radio Access Network 

(O-RAN) offers a way to integrate machine learning into cellular networks. This allows for the modular 

improvement of numerous RAN features without altering any existing RAN network element. This work replaced 

the vector autoregression approach with a neural network and improved it so that it takes the movement of the 

User Equipment (UE) into account.  

Abdulkarem et al. [24] proposed that purpose of implementing a handover mechanism is to minimize the time 

required for the cellular network to execute. By analyzing the 5G cellular network's resource allocation and 

handover mechanism, we can determine how well the suggested simulation model performs. Because of this 

change, both the time it takes to prepare for and carry out a handover are decreasing.. 

Haghrah et al. [25] proposed that depending on the quality of the received signal, critical performance 

measures like the handover ratio, the frequency of handover failures, and the frequency of radio link failures are 

used to assess the handover procedure.  

Nyangaresi  [26] proposed that several attacks that can exploit handover protocol include man-in-the-middle 

attacks, DOS attacks, impersonation attacks, jamming attacks, and packet replays. Furthermore, it does not 

provide hig fohrward key secrecy. This research presents a method for selecting a target monitoring area that 

makes use of Self-Organizing Maps (SOMs). The handoff entities are further authenticated using a mechanism 

that relies on elliptic curve cryptography. There has been a marked decrease in ping-pong and unsuccessful 

handoffs, according to the data collected.  

Khan et al. [27] proposed that the complexity of the radio environment makes it difficult to solve these 

problems using analytical models since they may not characterize the wireless channel. In this study, we suggest 

ML techniques that are driven by data to effectively address these issues in WLAN networks. Authors compare 

the outcomes of the suggested strategies to those of more conventional methods of addressing the aforementioned 

issues.  

Liu et al. [28] proposed that may encounter the edge of coverage more often as a result of the densification of 

small base stations, which could bring about significantly higher inter-cell interference. This study presented a 

new handover method that combines the benefits of fuzzy logic with multiple attributes decision algorithms 

(MADM). This study uses historical data to define the ideal membership functions within the fuzzy system, which 

further enhances the performance of the suggested scheme. It also incorporates the subtractive clustering 

technique.  
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Alhabo et al. [29] proposed that the deployment of ultra-dense tiny cells can lead to severe interference, a high 

number of frequent needless handovers, and/or handover failure. As a result, excessive power consumption is 

anticipated. To improve the network's energy efficiency, it's a good idea to put some small cells into idle mode, 

as long as this doesn't reduce service quality. To lessen the load on dense small cell networks, we offer a game-

theoretic approach in this study.  

Research Gaps 

The research gaps identified based the study of existing work in the domain and in general suggests that most 

of the research frameworks do not identify techniques which exhibit co-existence or mutual coherence of metrics. 

Although condition checking isn't always required, it's worth thinking about because wireless and IoT networks 

can have different receiver sensitivities, which can increase the likelihood of errors. Equalization is not 

incorporated into the handover procedure in current research. Equalization for the handover procedure, which can 

lower the mistake rate and improve the system's quality of service, is not included in the current research. 

1. Typically, the above research gaps can be addressed by analyzing the error rate characteristics under variable 

SNR. 

2. Employing an iterative equalization mechanism. 

The equalization mechanism is depicted in figure 5. 

 

Fig.5 Channel Equalization 

Channel equalization can be performed by iteratively sensing the channel and employing it to invert the 

characteristics [30]. 

𝑬(𝒇, 𝒕) =
𝟏

∑ 𝑯(𝒇,𝒕−𝑻𝒊)𝒏
𝒊=𝟏

                                     (2) 

Here, 

𝐸(𝑓, 𝑡) denotes equalizer response. 

𝑛 are samples. 

𝑇 denotes sampling time 

To estimate the channel,  

Compute the error in time domain as [31]: 
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𝒆(𝒕) = 𝒚(𝒕) − 𝒅(𝒕) at the receiving end                    (3) 

Obtain h(t) as: 

 

𝒉(𝒕) − 𝒚(𝒕) = 𝒆(𝒕)                                                      (4) 

This process can be applied iteratively for samples over a period ‘T’. 

5. SOCIAL RELEVANCE 

The social relevance of the research can be attributed to the need for seamless connectivity among users under 

stationary or mobile conditions under diverse geographical and topographical scenarios. In addition to their 

technical importance, these processes have significant social relevance and influence, affecting multiple facets of 

everyday life, economic activities, and society progress. An efficient handover process plays a crucial role in 

improving connectivity, facilitating economic development, providing essential services, and closing the gap in 

digital access. Some practical applications bolster the concept [32]. 

Enhanced Connectivity and QoS: The continuous connectivity is essential for maintaining social 

relationships, enabling real-time communication, and supporting mobile lifestyles. Whether it’s a business call on 

the move or accessing information while traveling, effective handover mechanisms keep individuals connected, 

enhancing their social interactions and productivity [33]. 

Enhancing Economic Growth: By ensuring seamless connectivity, handover mechanisms contribute to 

economic efficiency, enabling businesses to leverage mobile technologies and digital platforms. This, in turn, 

drives innovation, creates jobs, and boosts economic growth [34]. 

Supporting Critical Services: The role of handover mechanisms extends to critical services such as 

healthcare, emergency response, and public safety. Telemedicine, for instance, relies on stable and continuous 

connections to provide remote consultations and monitor patients’ health in real-time. Similarly, emergency 

services depend on reliable communication networks to coordinate responses and manage crises effectively. 

Efficient handover mechanisms ensure that these critical services are not disrupted, thereby enhancing public 

safety and health outcomes. The reliability of these networks can be life-saving, particularly in emergency 

situations where every second counts [35]. 

Improving Conditions in Socially Backward Areas: Handover mechanisms also play a role in bridging the 

digital divide, ensuring that connectivity is not just a privilege of urban areas but extends to rural and underserved 

regions. As wireless networks expand, effective handover management is crucial for providing consistent service 

across diverse geographical areas. This helps in reducing the gap between urban and rural populations in terms of 

access to information, educational resources, and economic opportunities. By facilitating broader access to mobile 

and internet services, handover mechanisms promote inclusivity and support socio-economic development in less 

connected regions in areas such as [36]: 

• Education. 

• Healthcare. 

• Local Business  

• Small finances. 

• Information exchange etc. 

CONCLUSION 

It can be concluded from previous discussions that machine learning offers a transformative approach to 

optimizing handover processes in wireless networks. By enabling more intelligent, data-driven decisions, ML-

based handover mechanisms can significantly improve network performance, enhance user experience, and ensure 

the efficient use of network resources. As wireless networks continue to evolve with the deployment future 

generation technologies, machine learning will play an increasingly critical role in managing the complexities of 
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modern communication systems, paving the way for more adaptive and resilient handover strategies. This paper 

presents a holistic review of the existing work in the domain, existing challenges and future directions of research. 
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