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Abstract: - Machine Learning and Deep Learning Algorithms have been explored widely to identify potential avenues
to optimize future generation loT networks. One such area happens to be a data driven model for initiating handover among
multiple access techniques such as FDM, OFDM, OTFS and NOMA.. The amount of data which is generated for variable
channel conditions typically in 10T applications is enormously large and hence conventional rule based mechanisms do not
render high accuracy in handover problems in loT and wireless Ad-Hoc networks. With the increasing data handling ability
of machine learning and deep learning models, handover based on various channel metrics such as fading factor, received
SNR and error rates can be implemented. This rules out the need for conventional handover mechanisms for software defined
networks. Multiple machine learning and deep learning models have been explored thus far for initiating handovers for 10T
applications, which are explored and discussed in this paper. The salient features of each of the approaches has been
highlighted along with identifying potential research gaps, thereby paving the path for future research the domain.

Keywords: Internet of Things (IoT), Machine Learning, Handover, Quality of Service, Future Generation Wireless Systems,
Bit Error Rate.

1. INTRODUCTION

The Internet of Things (IoT) represents a transformative paradigm that connects physical devices, sensors, and
systems to the internet, enabling seamless data exchange and automation. IoT networks comprise diverse devices
such as smart home appliances, wearables, industrial sensors, and connected vehicles. These devices communicate
using wireless technologies like Wi-Fi, Zigbee, LoRaWAN, and 5G, supporting applications in healthcare,
transportation, agriculture, and smart cities. The growing integration of IoT devices into daily life has led to a
significant increase in the complexity of network architectures. As devices move between different locations,
ensuring continuous connectivity becomes a critical challenge, particularly in dynamic environments like smart
cities or vehicular networks [1].
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Figure 1 depicts the IoT framework. Data transmission is the cornerstone of IoT networks, enabling devices to
exchange information with each other and centralized systems. IoT devices collect vast amounts of data through
sensors, which are then transmitted to cloud servers or edge devices for processing and analysis [2]. The efficiency
and reliability of data transmission directly impact the performance of IoT applications, from real-time monitoring
in healthcare to predictive analytics in smart factories. This process involves a combination of wired and wireless
communication protocols designed to meet the specific requirements of IoT systems, such as low power
consumption, minimal latency, and secure data handling [3].

IoT networks rely on various communication technologies, each suited to specific applications and
environments. Short-range protocols like Bluetooth, Zigbee, and Wi-Fi are commonly used for home automation
and wearable devices, providing high-speed data transfer over limited distances. On the other hand, long-range
protocols like LoRaWAN, Sigfox, and cellular networks (e.g., 4G, 5G) cater to industrial loT and smart city
applications, where devices are distributed over wide areas. The choice of technology depends on factors such as
data rate, power efficiency, range, and network scalability [4]. For instance, low-power wide-area networks
(LPWANS) are ideal for battery-operated devices that require infrequent data transmission over long distances.
IoT data transmission faces several challenges due to the diverse and dynamic nature of IoT ecosystems.
Bandwidth limitations, signal interference, and network congestion can hinder the smooth flow of data, especially
in environments with a high density of devices. Power constraints in [oT devices also necessitate the use of energy-
efficient transmission techniques, as frequent data communication can drain batteries quickly [5]. Furthermore,
ensuring data integrity, confidentiality, and availability during transmission is critical to addressing security
threats such as eavesdropping, data tampering, and denial-of-service attacks. These challenges demand robust
transmission protocols and adaptive network management strategies [6].

2. DATA OPTIMIZATION AND HANDOVER

Typically, wireless channels in IoT networks exhibit a frequency dependent nature depicted in figure 2.
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Fig.2 Frequency dependent nature of wireless channels.
The nature of wireless channels can be represented as [7]:
H=g(.1t) 1)
Here,
H denotes the frequency response of the channel
g denotes the governing function

t denotes the time variable.
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f denotes the frequency variable.

Due to the frequency ad temporal variations, the signal strength received at the loT gateway may often be
extremely fluctuating as depicted in figure 3.
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Fig.3 Typical received signal strength at the IoT gateway

Due to the variability in the signal strength, the quality of service (QoS) degraded making is necessary to employ
handover among multiple access techniques Handover, also known as handoff, refers to the process of transferring
an ongoing network connection from one access point or base station to another without interruption. In IoT
networks, handover ensures that devices maintain seamless communication as they move across network
boundaries [8]. Unlike traditional cellular networks, IoT devices exhibit unique challenges due to their varying
power constraints, diverse protocols, and differing data transfer requirements. Efficient handover mechanisms are
essential to guarantee low latency, minimize packet loss, and support uninterrupted services in scenarios such as
connected cars transitioning between cell towers or wearable health monitors moving across Wi-Fi zones [9]. As
IoT networks expand, the demand for reliable and efficient handover mechanisms becomes increasingly critical.
Inefficient handovers can result in service disruptions, increased energy consumption, and degraded user
experiences, particularly in latency-sensitive applications like remote surgery or autonomous driving.
Additionally, the heterogeneous nature of IoT networks necessitates advanced algorithms capable of handling
transitions across different wireless technologies. Factors such as network load, signal strength, and device
mobility patterns must be considered to optimize handover processes. Addressing these challenges ensures not
only the reliability of IoT services but also enhances their scalability and user acceptance [11].

The ongoing development of loT networks highlights the need for innovative handover solutions tailored to
the specific requirements of IoT applications. Emerging technologies like artificial intelligence (Al), edge
computing, and 5G are pivotal in shaping advanced handover strategies. Al-driven predictive models can
anticipate mobility patterns and optimize network resource allocation, while edge computing can reduce latency
by processing data closer to the device. However, challenges such as security vulnerabilities, interoperability
issues, and the integration of sustainable energy-efficient methods remain areas for further research. Solving these
challenges will pave the way for robust, future-proof IoT networks capable of supporting the evolving digital
ecosystem [12]. Advancements in communication technologies and network optimization techniques are helping
to overcome data transmission challenges in IoT networks. Adaptive data compression, intelligent routing
algorithms, and edge computing solutions are being implemented to enhance transmission efficiency and reduce
latency. For instance, edge devices can preprocess data locally, transmitting only relevant information to the cloud,
thereby reducing the load on communication channels. Additionally, emerging technologies such as 5G and 6G
promise higher bandwidth and lower latency, enabling seamless data transmission for mission-critical applications
[13]. Integrating artificial intelligence (AI) and machine learning (ML) into network management can further
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optimize data flow, predict traffic patterns, and ensure efficient resource allocation. While several handover
protocols can be implemented for [oT Networks, yet the most common ones can be [14]:

Between multiple access techniques (NOMA, OFDM, OTFS etc.)
Between (device to device: D2D) and Cellular modes
Between Wifi and WiMax etc.
The choice of the handover needs to be application specific and the features should be chosen accordingly.
3. MODELS FOR IMPLEMENTING HANDOVER

The future of IoT data transmission lies in the convergence of advanced technologies such as Al, blockchain,
and quantum computing. Al-based algorithms can predict network conditions and optimize transmission paths,
while blockchain ensures secure and decentralized data exchange [15]. As IoT devices proliferate, the
development of standardized protocols and interoperable systems will become increasingly vital. These
innovations will enable IoT networks to handle massive data volumes efficiently, unlocking their full potential
across diverse industries. The most commonly used data driven machine learning models for loT handover are
presented next [16]:

Machine learning models can be trained using vast amounts of network data, such as user mobility patterns,
historical handover events, and network conditions [17]. By analyzing this data, ML algorithms can learn to
predict when a handover is necessary and which target cell would provide the best service quality. Supervised
learning techniques, such as decision trees, random forests, and neural networks, can be employed to classify the
optimal handover timing and target base station. Reinforcement learning, on the other hand, can be used to develop
intelligent agents that make handover decisions based on real-time network conditions, optimizing long-term
network performance [18].
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Fig.4 Machine Learning Assisted Model for Handover

Figure 4 depicts a generic machine learning neural model for handover. In this model, the Bit Error Rate (BER)
is to be estimated by the model based on channel metrics. Several types of machine learning techniques have been
applied to optimize handover in wireless networks [19]. Supervised learning methods such as support vector
machines (SVMs) and decision trees are commonly used to predict the optimal handover time based on labeled
training data [20]. Unsupervised learning techniques, such as clustering algorithms, help in identifying patterns in
user mobility and network usage, enabling more efficient handover decisions. Deep learning models, such as
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), can process more complex
datasets, including time-series data, and improve handover prediction accuracy in rapidly changing environments
[21]. Additionally, reinforcement learning has gained attention for its ability to optimize handover strategies by
learning from real-time interactions with the network environment [22].
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For instance, if the handover is to be initiated between multiple access techniques such as OFDM and
NOMA, the following condition can be employed:

if (BERyoma < BERorpm)
{

Choose NOMA as the transmission technique

else

{
Fall back to OFDM

}

In this case, the multiple access technique NOMA has been chosen as the primary access techniques while OFDM
has been chosen to be the automatic fall back option.

4. PREVIOUS WORK

This section presents the most recent research in the domain with the identified research gaps to bolster future
research.

Pranato et al. [23] proposed that by utilizing a Radio Intelligent Controller (RIC), Open Radio Access Network
(O-RAN) offers a way to integrate machine learning into cellular networks. This allows for the modular
improvement of numerous RAN features without altering any existing RAN network element. This work replaced
the vector autoregression approach with a neural network and improved it so that it takes the movement of the
User Equipment (UE) into account.

Abdulkarem et al. [24] proposed that purpose of implementing a handover mechanism is to minimize the time
required for the cellular network to execute. By analyzing the 5G cellular network's resource allocation and
handover mechanism, we can determine how well the suggested simulation model performs. Because of this
change, both the time it takes to prepare for and carry out a handover are decreasing..

Haghrah et al. [25] proposed that depending on the quality of the received signal, critical performance
measures like the handover ratio, the frequency of handover failures, and the frequency of radio link failures are
used to assess the handover procedure.

Nyangaresi [26] proposed that several attacks that can exploit handover protocol include man-in-the-middle
attacks, DOS attacks, impersonation attacks, jamming attacks, and packet replays. Furthermore, it does not
provide hig fohrward key secrecy. This research presents a method for selecting a target monitoring area that
makes use of Self-Organizing Maps (SOMs). The handoff entities are further authenticated using a mechanism
that relies on elliptic curve cryptography. There has been a marked decrease in ping-pong and unsuccessful
handoffs, according to the data collected.

Khan et al. [27] proposed that the complexity of the radio environment makes it difficult to solve these
problems using analytical models since they may not characterize the wireless channel. In this study, we suggest
ML techniques that are driven by data to effectively address these issues in WLAN networks. Authors compare
the outcomes of the suggested strategies to those of more conventional methods of addressing the aforementioned
issues.

Liu et al. [28] proposed that may encounter the edge of coverage more often as a result of the densification of
small base stations, which could bring about significantly higher inter-cell interference. This study presented a
new handover method that combines the benefits of fuzzy logic with multiple attributes decision algorithms
(MADM). This study uses historical data to define the ideal membership functions within the fuzzy system, which
further enhances the performance of the suggested scheme. It also incorporates the subtractive clustering
technique.
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Alhabo et al. [29] proposed that the deployment of ultra-dense tiny cells can lead to severe interference, a high
number of frequent needless handovers, and/or handover failure. As a result, excessive power consumption is
anticipated. To improve the network's energy efficiency, it's a good idea to put some small cells into idle mode,
as long as this doesn't reduce service quality. To lessen the load on dense small cell networks, we offer a game-
theoretic approach in this study.

Research Gaps

The research gaps identified based the study of existing work in the domain and in general suggests that most
of the research frameworks do not identify techniques which exhibit co-existence or mutual coherence of metrics.
Although condition checking isn't always required, it's worth thinking about because wireless and IoT networks
can have different receiver sensitivities, which can increase the likelihood of errors. Equalization is not
incorporated into the handover procedure in current research. Equalization for the handover procedure, which can
lower the mistake rate and improve the system's quality of service, is not included in the current research.

Typically, the above research gaps can be addressed by analyzing the error rate characteristics under variable
SNR.
Employing an iterative equalization mechanism.

The equalization mechanism is depicted in figure 5.
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Fig.5 Channel Equalization

Channel equalization can be performed by iteratively sensing the channel and employing it to invert the
characteristics [30].

- r
Sl H(f,t-Ti)

E(f,t) = @)

Here,

E(f,t) denotes equalizer response.
n are samples.

T denotes sampling time

To estimate the channel,

Compute the error in time domain as [31]:
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e(t) = y(t) — d(t) at the receiving end 3)
Obtain h(t) as:

h(®) —y@®) = e(t) (4)
This process can be applied iteratively for samples over a period ‘T’.
5. SOCIAL RELEVANCE

The social relevance of the research can be attributed to the need for seamless connectivity among users under
stationary or mobile conditions under diverse geographical and topographical scenarios. In addition to their
technical importance, these processes have significant social relevance and influence, affecting multiple facets of
everyday life, economic activities, and society progress. An efficient handover process plays a crucial role in
improving connectivity, facilitating economic development, providing essential services, and closing the gap in
digital access. Some practical applications bolster the concept [32].

Enhanced Connectivity and QoS: The continuous connectivity is essential for maintaining social
relationships, enabling real-time communication, and supporting mobile lifestyles. Whether it’s a business call on
the move or accessing information while traveling, effective handover mechanisms keep individuals connected,
enhancing their social interactions and productivity [33].

Enhancing Economic Growth: By ensuring seamless connectivity, handover mechanisms contribute to
economic efficiency, enabling businesses to leverage mobile technologies and digital platforms. This, in turn,
drives innovation, creates jobs, and boosts economic growth [34].

Supporting Critical Services: The role of handover mechanisms extends to critical services such as
healthcare, emergency response, and public safety. Telemedicine, for instance, relies on stable and continuous
connections to provide remote consultations and monitor patients’ health in real-time. Similarly, emergency
services depend on reliable communication networks to coordinate responses and manage crises effectively.
Efficient handover mechanisms ensure that these critical services are not disrupted, thereby enhancing public
safety and health outcomes. The reliability of these networks can be life-saving, particularly in emergency
situations where every second counts [35].

Improving Conditions in Socially Backward Areas: Handover mechanisms also play a role in bridging the
digital divide, ensuring that connectivity is not just a privilege of urban areas but extends to rural and underserved
regions. As wireless networks expand, effective handover management is crucial for providing consistent service
across diverse geographical areas. This helps in reducing the gap between urban and rural populations in terms of
access to information, educational resources, and economic opportunities. By facilitating broader access to mobile
and internet services, handover mechanisms promote inclusivity and support socio-economic development in less
connected regions in areas such as [36]:

Education.
Healthcare.
Local Business
Small finances.
Information exchange etc.
CONCLUSION

It can be concluded from previous discussions that machine learning offers a transformative approach to
optimizing handover processes in wireless networks. By enabling more intelligent, data-driven decisions, ML-
based handover mechanisms can significantly improve network performance, enhance user experience, and ensure
the efficient use of network resources. As wireless networks continue to evolve with the deployment future
generation technologies, machine learning will play an increasingly critical role in managing the complexities of
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modern communication systems, paving the way for more adaptive and resilient handover strategies. This paper
presents a holistic review of the existing work in the domain, existing challenges and future directions of research.
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