Magesh Kumar K^1 , Dinakaran K^2 , Valarmathie P^3 ,

Leveraging AI for Digital User Behaviour Prediction and Recommendation System: A Comprehensive Study

Abstract:

To enhance personalization and precision in digital ecosystems, this study applies AI to prediction and recommendation systems for digital user behavior. The purpose of this study is to assess the strengths, weaknesses, and potential applications of various recommendation algorithms, including those that rely on collaboration, content, knowledge, and hybrid models, in order to forecast user preferences. The study focuses on the ways AI enhances the scalability, accuracy of predictions, and flexibility of recommendation systems. Major challenges for recommendation systems driven by AI include scalability, interpretability of models, integration of data from many channels, and issues with privacy and fairness. The review exhibits the capabilities of AI in recommendation schemes and provides strategies for user involvement; nevertheless, it also highlights areas that require more investigation to tackle ethical and technological challenges.

Keywords: Artificial Intelligence (AI), Recommendation Systems, Digital User Behaviour, Personalization, Collaborative Filtering, Predictive Analytics

I. INTRODUCTION

Numerous research has concentrated on the use of the Internet (Hargittai & Hinnant, 2008) (Wolny & Mueller, 2013). Among other things, these studies have looked at user capacities, independence, goals, and skill sets. A wide variety of approaches have been used to analyze user digital behavior. Studies compare and contrast male and female behaviors (Dixon et al., 2014) as well as differences between adults and younger users. Still others look into what makes a person come back to a website (Castaneda et al., 2007), the reason behind the user's visit to the website (Muñoz-Leiva et al., 2012), as well as the private information divulged by users' digital traces (Vervier et al., 2017).

Research on online behaviour may make use of a wide variety of methods, such as surveys, interviews, and Big Data, among many others(SanMiguel & Sádaba, 2020). According to Asenjo's extensive study of online behavior,(Asenjo, 2011) User behaviour research might benefit from big data. Digital activity could be described by the structure, content, and user session of an online platform. First, there's the matter of website structure, connections, and surfing preferences. Data accessibility (including but not limited to texts, videos, apps, and semantics) comes in at number two. Lastly, the web user session details the click stream of every web user throughout a website visit, including the user's surfing trajectory, the pages seen, and the amount of time spent on the website (Snášel & Kudelka, 2009).

Recommender systems (RSs) that are data-driven help consumers find the best articles, movies, and other material. Products and services are suggested using recommender systems (RSs), which are information filtering systems, according to the user's interests. To sift through mountains of user data in search of relevant

¹Research Scholar, Artificial intelligence and data science, S.A. Engineering College, Chennai, Tamil Nadu, India. Email: marketingmagesh@gmail.com

²Professor, Artificial intelligence and data science, S.A. Engineering College, Chennai, Tamil Nadu, India. Email: kdinacse@gmail.com

³Professor, Information Technology, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India. Email: csevalar@gmail.com

recommendations, recommender systems utilize clustering, collaborative filtering, and deep neural networks. Education is one of the domains that make use of recommender systems(Agarwal et al., 2022), e-commerce (Kersbergen & Schelter, 2021), (Guo et al., 2023) and more.

Twenty years ago, we created personalized online service recommendation systems that employ AI to identify customer preferences and profiles. More and more, apps powered by AI are outperforming their predecessors(Q. Zhang et al., 2021) Recent developments include the development of autonomous vehicles, advances in computer vision and voice recognition, and the AlphaGo AI software developed by Deep Mind that beat a professional Go player. Recent developments in artificial intelligence, data analytics, and big data present recommender systems with opportunities to use AI's remarkable accomplishments.

The recommender system is the focus of this article, which aims to foresee digital user behavior through its integration with AI. This study presents AI-based recommendation techniques, technical trends, and application fields; the primary analysis is on digital marketing user behavior, prediction in recommendation systems, evolution of AI algorithms, and recommendation algorithm efficiency. We go into the fundamentals, algorithm performance enhancements, and practical scenarios of artificial intelligence in recommender systems to help you make sense of this ever-changing issue. Optimal model performance, integration across channels, user privacy, and ethical considerations are potential areas of emphasis for AI-powered recommendation systems.

The primary contributions of this paper can be summarized as follows.

- An in-depth analysis of the algorithms used in recommender systems, including collaborative filtering, content-based techniques, knowledge-based systems, and hybrid approaches, with a focus on their pros and cons.
- Researching patterns and trends in user behavior across digital marketing ecosystems in order to enhance the accuracy and relevance of suggestions.
- Consider efficiency, dataset, applicability, and adaptability to changing user preferences and contextual
 circumstances when assessing current algorithms that predict digital user behavior and provide
 recommendations.
- The effects of AI on recommendation systems, such as their adaptability, capacity to scale, and
 precision of predictions, are assessed. Improved system performance and user engagement are the goals
 of this AI investigation.
- Issues with privacy and fairness, as well as scalability and the interpretability of artificial intelligence models, multi-channel data integration, and other similar problems plague recommendation systems.

Overview of Recommender Systems

In their early stages, recommender systems relied on content-based suggestions and collaborative filtering. 1992 saw the introduction of user-based collaborative filtering, whereas 1999 saw the introduction of item-based. Suggestions were provided by *content-based recommendation* algorithms *based on item* attributes and user preferences. The popularity of social recommendation systems has grown in the modern era, thanks to the rise of social media and artificial intelligence. Users' actions in one domain can influence recommendations in another with the use of cross-domain recommendation techniques.

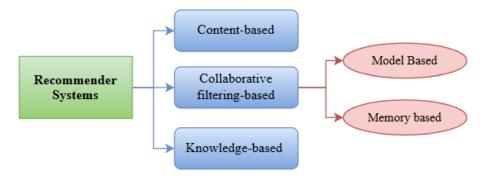


Fig. 1. Classification of Recommender Systems (Kuanr et al., 2020)

a. Content-Based Recommendation Systems

Throughout the evolution of recommender systems, content-based recommendation has remained a cornerstone as the first and most basic recommendation algorithm(Marcuzzo et al., 2022). New recommendation algorithms may have a greater influence, but this is still an essential and beneficial step in the right direction. Suggestions are mostly generated by comparing item qualities with consumers' historical preferences in content-based recommendation algorithms, an obvious class of algorithms. At first, it was quite content type specific, relying largely on text elements, images, and audio. They use customers' past choices to identify which products to suggest to them based on how similar their content is to things they have already liked(De Gemmis et al., 2008)(Mooney & Roy, 2000). The item of interest, user information, and things-to-user interactions form the basis of a content-based recommendation algorithm. Especially noteworthy is the fact that it blatantly disregards the actions of other users. Figure 2 below provides a schematic illustration.

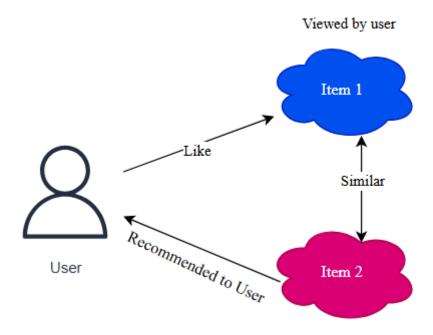


Fig.2. Content-Based Recommendation System

Recommender systems that are based on content propose related goods to the user. Documents and descriptions are used to get the first item characteristics. The film's genre, director, writer, actors, storyline, and so on might all be metaphors. Tables, articles, and news are examples of both organized and unstructured data that can provide various attributes. The term-inverse document frequency weighting vector space model (Salton et al., 1975) In content-based recommender systems, retrieval by keywords is commonplace. To figure out what people like, content-based recommender systems look at what they've already consumed. A user's likes and dislikes from the past are often listed on their profile. Consequently, data mining and machine learning investigate profiling as a binary classification issue. Naïve Bayes, decision trees, and nearest neighbor algorithms are some of the traditional approaches used at this step(Sebastiani, 2002). To obtain the most relevant recommendations, the system first creates a profile of the user and then compares the item's qualities to that profile. Using qualities from the two stages before it, a content-based recommender system sorts and matches user profiles with item representations. The importance assessment of the proposal is reliant on on the item illustration and user profile since the purpose is to express the aligned things and eliminate the ones the user normally disapproves of (Herlocker et al., 2004). (Son & Kim, 2017) I suggested a new CBF method that makes use of a multi-attribute network to properly represent characteristics in correlations for consumer item recommendations. Used network analysis to evaluate the degree to which elements were comparable both directly and indirectly. We offer a method that investigates item linkages and their structural patterns by means of centrality and clustering. A number of performance-enhancing recommendations are made to the user by this system. Using Movie Lens data, we compared our method to existing ones and discovered that ours was more accurate and robust. Several benefits may be gained from a recommender system that is based on content(Lops et al., 2011), (Shambour & Lu, 2012). Recommendations based on content begin with item representation and do not depend on the user. Based on the results, data sparsity is irrelevant to this system. Secondly, customers may avoid the cold-start problem when using content-based recommender systems to test out new items. The suggested result could be explicable by *content – based recommender systems*. This method has a leg up over competing systems in practice because of how transparent it is. Several problems plague content-based recommender systems(Adomavicius & Tuzhilin, 2005). While these fixes take care of the new item problem, they aren't perfect for the new user problem either, as inaccurate suggestions are heavily impacted by missing profile information. By suggesting consumers comparable products, content-based algorithms also overspecialize in their suggestions. People would prefer discover fresh, trendy items than see the same old suggestions, thus these lists might end up being boring. Furthermore, content-based recommender systems have the problem of inaccurate object representation. This means that, compared to using images or music, this approach is superior for suggesting articles or news.

II. Collaborative Filtering-Based Recommendation Systems

Collaborative filtering (CF)-based recommender systems employ user ratings to establish an item's worth, as opposed to content-based recommender systems that depend only on an individual's historical data(Balabanović & Shoham, 1997). This approach has been extensively studied in academics (Resnick et al., 1994) and was rapidly used in the industry over 20 years ago (Linden et al., 2003). Currently, collaborative filtering (CF) remains the predominant method used in recommender systems (H. Liu et al., 2014). Data for a collaborative filtering (CF) system comes from users whose tastes are similar to the target user's, since the CF method is based on the idea that people with similar interests will interact with similar things. Predicting how a user would rate unsold products using a user-item rating matrix is a common scenario in collaborative filtering; this circumstance is related to the matrix completion issue (Hu et al., 2012). Two main kinds of collaborative filtering (CF) methods exist: those that rely on memory and those that rely on models. Like we saw in the previous section, model-based CF uses data mining or machine learning techniques to predict how a user would rate items, as opposed to relying on heuristics. This method has been studied extensively for potential usage in several domains, but it was originally designed to fix issues with memory-based CF. Additional information such as location, tags, and reviews are added to the user-item rating matrix(Shi et al., 2014). An ideal scenario for the model-based CF method would be to combine the supplementary data with the rating matrix. In 2009, the Netflix Prize competition included the development of matrix factorization (Koren et al., 2009), It is still widely recognized as one of the leading algorithms in this field. Because it maps the user's and the item's space onto the same latent factor space, the two become equivalent. Matrix factorization is well-liked because of three advantages. By significantly lowering the dimensionality of the user - item rating matrix, matrix factorization guarantees scalability. Secondly, the sparsity problem is reduced since the factorization process creates a dense rating matrix(Luo et al., 2015). Matrix factorization is a substantial upgrading over memory-based techniques and may provide users with a small number of ratings with more accurate suggestions. Finally, matrix factorization is great for including many ancillary data points(B. Liu et al., 2014). This improves the performance of recommender systems and helps with user preference profiling. There are two kinds of memory-based CF: user-based CF and item-based CF. The former uses heuristic approaches to create similarity values between people or things(Deshpande & Karypis, 2004). With Memory-CF, the nearest neighbor algorithm is employed. A user's ratings on various categories are evaluated by the proposal based on their neighbors' ratings. People love this algorithm since it's fast, accurate, and easy to understand. Despite its limitations, memory-based CF is well-liked because to its ease of use and practicality(Q. Zhang et al., 2021).

III. Knowledge-Based Recommender Systems

Recommendations in knowledge-based recommender systems are predicated on either past data or rules pertaining to user preferences and the functioning of items(Burke, 2002). Information gathered from a user's previous records is used to build a knowledge base in knowledge-based recommender systems, as opposed to content-based and CF-based techniques. All of the problems, restrictions, and solutions from the past are here in this knowledge library. When the system encounters a fresh suggestion problem, it consults the knowledge base for answers. Popular among knowledge-based systems is case-based reasoning, which solves the current

problem by drawing on previous instances. More formal representations are required for product similarity finding than content-based recommender systems. During this process, you'll look at similar problems from the past and figure out how to fix them differently. Many industries, including real estate, banking, and healthcare decision support, benefit greatly from the knowledge-based recommendation method (Felfernig et al., 2011). Each instance of these services offers a unique scenario, and they are all defined by a deep understanding of specific topics. This method retrieves and stores previous information in a database, thereby removing the new item/user issue. One further perk is that users may restrict the results that are suggested to them (Felfernig & Burke, 2008).

IV. Hybrid Recommender System

A hybrid recommender system, as shown in figure 3, should ideally have a vote method to merge collaborative-based recommender systems with independent content outcomes.

For maximum effectiveness, these recommendation systems merge the aforementioned techniques(Ricci et al., 2010), (Burke, 2002). Collaborative filtering is challenged by new goods that do not have user ratings. The new item conundrum is solved by content-based recommendation systems, which make predictions about objects based on their attributes and features. Hybrid RS is useful in these situations because it helps to overcome the limitations of individual RS. It is possible to construct hybrid RSs using a variety of CB and CF combinations(Gabrani et al., 2017a):

- Combine the outcomes of content-based and collaborative tactics after they have been implemented independently.
- Make use of collaborative filtering using content-based characteristics.
- Make use of a content-based RS's collaborative filtering features.
- Come up with a combined RS that uses both methods.

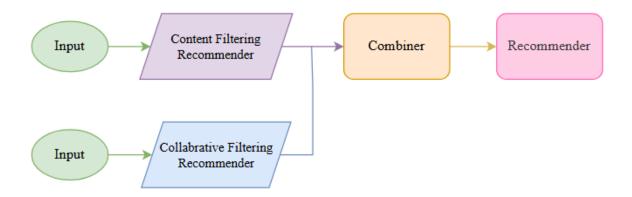


Fig.3. Basic Architecture Of The Hybrid Recommender System (Fanca et al., 2020)

Bellogin et al., (Bellogin et al., 2014) described a process that involves selecting products aligned with the user's profile while simultaneously ensuring they get favourable reviews from the user's peers. In (Stephen et al., 2017), The technique compares individuals using their content-based profiles and applies the resulting similarity metrics using a collaborative filtering methodology. In (Milovanovic, 2017), The rating matrix is improved using content-based predictions, and then collaborative filtering is executed. In(Vozalis & Margaritis, 2006), To do item-based collaborative filtering, we use the item's content description and rating vectors to determine how similar the items are to one another.

Table 1 Comparison of V	Various Recommendation S	Systems
--------------------------------	--------------------------	---------

Techniques	Working	Advantages	Disadvantages
Content Based RS	Suggestion based on Individual User Data	Domain of expertise is not necessary. Individual Freedom of Use Transparency	Specializing too much Inadequate content evaluation. A user must first do a cold start.
Collaborative Filtering RS	Making a suggestion depending on how similar numerous people are	Quick to make and implement. It is simple to include new things.	Flexibility in scaling. Starting from scratch Lack of Diversity Attacks on gray sheep hilling
Hybrid Filtering RS	Collaborative Filtering with Content-Based Features	Prevents cold startup	ComplexExpensive

V. User Behavior Patterns and Recommendation Accuracy in Digital Marketing Ecosystems

The marketing industry has seen three distinct epochs—traditional, internet, and digital—as a result of societal shifts and the quick development of new technologies. Route and category rivalry, which impact consumer purchasing experiences, are the focal points of technological advancements during these stages of development (Diez-Martin et al., 2019; Low et al., 2020). More and more people are making purchases online as a result of the proliferation of mobile internet and other fast-developing forms of information technology. The internet is increasingly shaping the operational settings of many different industries. (Saura et al., 2020). A comprehensive analysis of present trends and predictions for the future of digital marketing was provided by the 2022-2023 Digital Marketing Trends Report. The report centered on the utilization of artificial intelligence (AI) and big data (Eleonora, Tetiana, Ihor, Nataliia & Anastasiia, 2023). Online recommender systems that are high-value, personalized, and reliant on context have become increasingly popular as a result of the fast development of new technology in digital marketing. Modern recommendation systems leverage each user's use history as a key component. With the rapid expansion of the internet and the increasing importance of meeting consumers' everevolving, time-dependent needs, recommendation algorithms are quickly becoming outdated. Streaming data allows online store recommendation systems to track user activity in real time and then make suggestions that are relevant to the user's current context according to their tastes and habits. Some studies on real-time recommendation systems incorporate multi-behavior data to make them better. The recommendation algorithm has always been informed by user data. Han et al. (2024) investigated the scope and effectiveness of these prevalent strategies. Bad instructions are given to beginners in the traditional way. Problems like this arise because there isn't enough data and it's hard to change static user profiles to match evolving preferences. Computers have a hard time predicting new user preferences when system involvement is low. Conventional recommendation algorithms fail to take into account contextual information that is impacted by user activity in real-time. Season, locality, and promotions all have a role in sales. Due to their inability to contextualize ideas, traditional algorithms have become outdated (Liu et al., 2023). To enhance suggestion technology, recommendation systems provide interesting, dynamic alternatives based on user preferences and settings. They record user interactions in order to make suggestions that are more personalized, up-to-date, and adaptable. In today's digital marketplace, real-time recommendation systems are essential for boosting sales and customer happiness (Wei et al., 2023). Sales and customer satisfaction are both boosted by real-time recommendation systems in modern online commerce. By analyzing user activity indicators like as views, clicks, and more, these systems improve the accuracy of customization and recommendations. Contextual recommendations can be generated in real-time by analyzing user preferences and actions apart from purchase history. Algorithms may

learn consumer tastes and deliver tailored recommendations with the help of this innovative suggestion mechanism (Yan et al., 2023). Through user interaction, real-time recommendation systems lower data sparsity and increase accuracy (Ren et al., 2023). These systems tailor suggestions and profiles to each individual user based on their viewing, clicking, and purchasing habits. There are advantages and disadvantages to changing and improving these systems. In complicated real-time multi-behavior data stream optimization, efficient and dynamic approaches for precise suggestion are required (He et al., 2023). At last, contextually appropriate product suggestions from real-time recommendation systems improve income and consumer happiness (Chen & Zhu, 2022). Real-time data and cutting-edge algorithms, according to Yan et al. (2022; Zhao et al., 2023), raise the bar for consumer engagement and spending. New recommendations for real-time e-commerce will be developed through research. In highly competitive e-commerce, these technologies have the potential to boost both revenue and consumer experiences. With the advancement of technology, the digital economy will be impacted by real-time recommendation systems.

VI. Reviewof Algorithms in Digital User Behavior Prediction and Recommendation Systems

Table 2 Algorithms in User Behavior Prediction and Recommendation Systems

Algorithm	RS Type	Aim	Methods	Findings	Dataset	Applications	Ref
Deep learning	Hybrid Recommen der System	The goal of merging rating prediction with sentiment analysis from consumer reviews is to make recommendati on systems more accurate with ratings.	Implemented LightGCN, a deep learning- based method	Contributed a sentiment score supplement component to an enhanced rating prediction model, which improves rating prediction accuracy.	The followin g seven datasets are actual: opinions , goodrea ds reviews, luxury beauty, etc.	Boosts the precision of top-k item suggestions and rating predictions.	(TD. Nguyen , 2024)
Clustering based recommen der system	Collaborati ve Filtering	Reduce customer wait times to cut down on carbon dioxide emissions, fuel use, and traffic.	Integrated machine learning and mobile applications	There could be a more efficient and less expensive system for managing traffic and ensuring customer satisfaction	Dataset for smart freight transport ation simulati ons	A suggestion method for smart freight transit	(Gherai bia & Gouin- Vallera nd, 2019)
Clustering and genetic algorithms (GAs) hybr id model-	Collaborati ve Filtering	For better movie suggestions in the face of information overload and insufficient	Applied a data reduction method including enhanced K- means	Very good accuracy performance	Moviele ns dataset	I recommend videos and movies.	(Z. Wang et al., 2014)

based		data.	clustering in				
04304			conjunction				
			with genetic				
			algorithms				
			(GAs) and				
			principal				
			component				
			analysis				
			(PCA).				
Dece	Constant	The	Put	A significant	Subsequ	I will suggest	(W
Deep	Content-	development	probabilistic	improvement	ent to	some music.	(X.
Learning based	based Model	of a machine	graphical	in CF	the Echo		Wang
hybrid	Model	learning	models and	performance,	Nest's		& Wana
model		system	deep belief	much more	Taste		Wang, 2014)
model		capable of	networks to	so than the	Profile		2014)
		learning audio	use	conventional			
		features and		feature-based			
		producing		hybrid			
		tailored		method.			
		suggestions.					
Deep	Latent	When	Applying	With less use	Massive	We will	(Van
learning	Factor	listening data	convolutiona	data, Deep	Music	suggest music.	den
icarining	Model	is not	l neural	CNN	Databas		Oord et
	Model	available, to	networks was	outperforms	e		al.,
		use a latent	done	the			2013)
		component		conventional			2013)
		model to		method and			
		suggest new		provides			
		and unpopular		relevant			
		songs and to		suggestions			
		estimate latent					
		features from					
		audio of					
		music.					

A number of industries' recommendation systems have evolved due to the fast development of AI. The investigation of *large datasets* and the improvement of recommendation accuracy are two ways in which machine learning and deep learning might enhance the prediction of digital user behavior. Deep learning, clustering, and hybrid models are some of the AI-based algorithms that have made strides in addressing issues including information overload, scalability, and personalization.

To improve predictions and supply pertinent content, they use collaborative filtering, genetic algorithms, sentiment analysis, latent component modeling, and latent semantic analysis. The use of AI into these recommendation systems has resulted in enhanced user engagement, prediction accuracy, and the overall system's performance. Table 2 gives a rundown of the objectives, procedures, results, and test datasets used by current recommendation system algorithms. Results from the aforementioned trials demonstrate that recommendation systems may benefit from AI-driven solutions, which boost performance, delight users, and solve a wide range of problems.

VII. Artificial Intelligence Algorithms Used in Recommendation Systems

Their significance in Recommender Systems is increasing dramatically because to the continuous progress in generative AI and massive language models(Deldjoo et al., 2023). Nowadays, with the rise of e-commerce and other online applications, Recommender Systems (RecSys) play a crucial role in our daily lives by offering

ideas that are tailored to our individual interests. Recommender Systems have been greatly improved by Deep Neural Networks (DNNs) through the integration of textual side information and the simulation of user-item interactions; yet, these DNN-based approaches are not without their limits(Fang et al., 2020). Adapting to various recommendation scenarios, providing justification for predictions, and identifying user preferences while including textual supplementary information are all examples of such difficulties. Huge LLMs, like as ChatGPT and GPT-4, have revolutionized AI and natural language processing. The remarkable abilities of LLMs in language understanding, expression, generalization, and reasoning are the driving forces behind this shift (Z. Zhao et al., 2023). Table 2 delineates the widely used AI techniques.

Evaluation Metrics

In order to determine whether the techniques are effective, evaluation approaches are employed. To evaluate these methods, many measures are employed. Table 2 provides an exhaustive list of all evaluation tools utilized in this domain. Figure 4 shows that RMSE is the second most common statistic used to assess techniques, behind recall and accuracy. Equally important metrics for evaluating the approaches' performance include loss, accuracy, F1-score, and Mean Square Error (MSE).

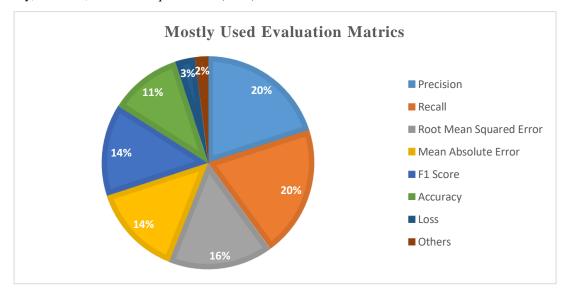


Fig. 2. Mostly Used Evaluation Metrics

Table 3 Widely Used AI based Techniques

AI based Techniques	References
BERT	(X. H. Nguyen et al., 2021), (Zhuang & Kim, 2021), (Anushree & Shashidhara, 2021)
Attention Based Model	(P. Liu et al., 2021), (Yakhchi et al., 2020), (Feng et al., 2019)
Back Propagation (BP) neural network with Attention Mechanism (BPAM)	(Xi et al., 2019)
Triple Attentive Neural Net-work (TANN)	(Khan et al., 2023)
Transformer Based Model	(Serrano et al., 2022), (Pan et al., 2020), (Pohan et al.,

	2022)
Feed Forward DNN	(Al Mubasher et al., 2023), (Kiran et al., 2020)
Adversarial GRU-Attention Matrix Factorization Model	(Xia et al., 2020)
Multi-agent system	(Rivas et al., 2019)

AI-Enhanced RS

The increasing amount of data available online is a formidable obstacle to the effectiveness of RSs, necessitating a dramatic improvement over their capabilities from a decade ago. The requirement for ubiquitous data processing on the Web necessitates that any good RS architecture address cold start, scalability, and sparsity(Gabrani et al., 2017b). To address these objectives, intelligent recommendation systems powered by AI were developed. These systems are sensitive to context and can filter material while also controlling information overload. To increase suggestion precision and stably overcome the previously outlined difficulties, recently developed recommendation systems (RS) employ powerful AI technologies. Fuzzy sets, ANNs, evolutionary computing, swarm intelligence, and AI are some of the current RS approaches (Abbas et al., 2015). During its chilly start, the popular AI technique in RSs known as collaborative filtering had limited data from user ratings, making it unable to provide adequate suggestions. In order to solve the challenge, the knowledge of comparable systems that have been running for a long time was exploited using transfer learning. (L. Zhao et al., 2017) proposed using probabilistic matrix factorization, maximum-margin, and regularized low-rank to enhance recommendation quality and cross-system knowledge transfer. Despite this, (Bigras et al., 2018) stressing the importance of end users receiving a wealth of information and a range of options from AI-based recommendation agents in order to earn their trust and approval. Users' perceptions of the quality of their decisions impact their adoption intention, which in turn affects the design of RSs, which continue to enhance users' decision-making processes.(R. Zhao et al., 2019) established that recommendation systems that do not provide enough information to users have a negative impact on user adoption, consumer decision-making, and company profitability. Concerns regarding privacy and user confusion over the suggestions' origins have been raised by modern AI-driven recommendation systems due to the implicit data gathering and analysis performed by these systems employing complex collaborative filtering and content-based filtering approaches. The amount of a system's logic that is visible to users is determined by its transparency. In order to increase the acceptability of recommendation systems, it is crucial to provide sufficient explanations (Kravchenko, 2019). Zhang et al. (Z. Zhang et al., 2013) to deal with sparse and uncertain data, a hybrid RS uses the Fuzzy Set Technique. This method employs collaborative filtering for telecom products and services based on users and items, as well as fuzzy set techniques. Despite its low scalability, this approach successfully addressed cold start and sparsity issues. "Cerrano-Guerrero et al." (Serrano-Guerrero et al., 2011) created fuzzy linguistic RS utilizing Google Wave features that enable interdisciplinary researcher association; this enables users to engage and collaborate with people who share their interests. To solve the cold start problem, this method asks new users to choose two - tuple linguistic values when they establish their profiles. The new user's preference vector is compared to the other vectors in order to regulate the degree of resemblance. Scalability and sparsity are issues that this approach fails to resolve. The couple Li and Kao made their proposal in (Y.-M. Li & Kao, 2009) TREPS stands for "trust-based recommender system," and it operates on social networks. To find reliable service providers and choose the best one, a fuzzy environment is utilized, together with fuzzy inference and multi-criteria decision-making (MCDM). This approach proposes peer services and removes information overload.

Bjelica Krstic(Krstic & Bjelica, 2012) built a TV program recommendation system using a feed-forward neural network that takes context into account. In order to fix the cold start problem, this technique looks at how often people watch TV. The group headed by Chou et al. (Chou et al., 2010) put out the idea of a BPNN-based personalized recommendation system. Users are grouped into groups by the BPNN training model based on their navigational behavior. By extracting navigation patterns, an *Unsupervised Web Mining* method is

employed to assess user navigation behaviors. In addition, the proposed recommendation system failed to deliver accurate suggestions for consumers and items with a low frequency of occurrence. Researchers Devi et al.(Devi et al., 2010) worked together to develop a PNN-based collaborative recommendation system that could handle cold start and sparsity problems. The user-item rating matrix is fed into Probabilistic Neural Networks (PNNs) to determine user trust. To reduce sparsity, we utilize this user trust to predict how much unrated things will be worth. Cluster centers are determined by the trust levels among users inside such clusters, and the suggested solution uses the self-organizing map (SOM) methodology to successfully identify trustworthy clusters. The Proposed RS works very well in practical settings since PNN is a fast, single-pass method. This is the work of Ansari et al. (Ansari et al., 2017) A system for detecting groups of online sessions using FNCNs has been created. In order to create overlapping clusters, the method use the Fuzzy C-Means (FCM) clustering methodology in conjunction with the Modified Self-Organizing Map (MSOM). Optimal cluster centers are discovered using the input-output layer of the unsupervised learning neural network model MSOM. But because the neural network doesn't converge very well, the computing time is much longer. Wan et al., (Wan & Niu, 2016) offered an online course recommendation system that makes use of Immune Algorithm and Mixed Concept Mapping. The initial step in using MCM to assess the features of learners and learning goals is to create models of both. The next step is to employ AI to make personalized suggestions. This RS is quite versatile because to IA. The author also developed and employed a block vaccination and a monomer vaccine to enhance the IA. Research by Acilar and colleagues (Acilar & Arslan, 2009) trained an AINet to provide recommendations in a collaborative manner. AINet generates implicit ratings by using a hyper-mutation strategy, which solves the sparsity problem. With each cycle, the sparsity decreases. They employed two separate suppression methods, clonal and network, which produce efficient neighborhoods, to solve the scalability problem. After that, the kmeans approach was employed to cluster the reduced dataset by the writers. Researchers Chen et al., (Chen et al., 2015) detailed an AIS Collaborative Filtering System that might be used to provide movie suggestions. During the training phase, the writers classified each client rating record as an antigen; in AIS, affinity denotes similarity. Once within the immune system, antigens replicate as antibodies, forming a complex web of interconnected immune responses. After the training phase is over, AIS uses evolution to generate a diversified collection of classification principles. The authors forecasted affinity and user ratings using AINet in CF, taking into account associated antibodies. After considering previous instances, the author revised the Pearson correlation coefficient for similarity estimate. Data scalability and cold start memory – based problems are not amenable to this method. Bedi and colleagues created in (Bedi & Sharma, 2012) the TARS system, which uses the ACO to find neighbors that are similar to it. TARS not only makes ideas, but also explains them. Additionally, he made an effort to increase connectedness for all users by drawing a trust graph where each edge represents the strength of trust between two users. More personalized recommendations are the result of ACO's dynamic behavior in building client confidence. Hsu et al., (Hsu et al., 2012) evaluated user preferences using Facebook's Artificial Bee Colony (ABC) algorithm. The method proposes individualized supplementary items based on the items' difficulty levels. This is the work of Kim et al. (Kim & Ahn, 2008) analyzed the groups of relevant consumers using a genetic algorithm (GA), and then examined those clusters using the K-means method. The GA K-means RS algorithm is so named after it. In comparison to more traditional clustering methods, this RS that use GA K-means clustering improves segmentation efficacy and delivers more accurate suggestions. Noor et al.(Al-Shamri & Bharadwaj, 2008) proposed a hybrid fuzzy genetic algorithm for use in a recommendation system. The authors begin by implementing hybrid filtering with a concise user model in order to decrease the system's complexity and the sparsity of the user-item matrix. User preferences are given weights according to their ratings. When trying to determine how similar two users' tastes are, the Fuzzy Distance Function comes in handy. The sparsity problem is reduced in a user model built using a hybrid feature, and scalability is improved by integrating less data than the complete dataset.

VIII. Current challenges in AI & recommender systems

Since ML techniques have recently been successful in solving common prediction or classification issues, the number of applications that use ML models as "black boxes," or things that end users don't understand, has grown substantially (Gunning et al., 2019). The ability of a machine learning model to "explain itself and its actions" to users is a prime reason why present-day AI applications are gravitating toward current explainable AI models (Arrieta et al., 2020), Now that explainable AI is here,

"Explainable Recommendation Systems" try to provide people good suggestions along with explanations, which usually have to do with the reasoning behind the suggestions or the advantages of picking the suggested alternatives(Sagi & Rokach, 2020). These aspects are vital because they boost the system's persuasiveness, customer happiness, comprehension while the and giving user quick payoff. Subject modeling, graph - driven, deep learning, knowledge - graph, interaction rules, post - hoc models, etc. are some of the algorithms and models used to generate explanations in explanation-driven recommendations. The type of explanations caused (textual, visual, etc.) is the second primary area of focus(Y. Zhang & Chen, 2020). The following list of Explainable recommendations is arranged according to the kind of explanation provided:

- **User-based and item-based explanations:** These are classic forms of explanation that draw on user input and are presented as a list of similarities between *the system's* various *users* (*in the case of user based* recommendations) or things (*in the case of item based recommendations*).
- **Content based explanation:** This kind is based only on the feature space of the item (e. g., the writer, the type of book, etc. for book recommendations).
- **Textual explanations**: The recommendations in the *textual explanations* comprise clarification phrases that could be derived from natural language processing methods or reviews left by other users.
- **Visual explanations:** These explainable recommendations employ item photos to highlight the portion of *the image that* corresponds to the *item images* that the *user* may find interesting.
- **Social explanations:** These justifications make reference to products that users' "friends" in certain communities or social networks also like.
- Hybrid explanations: These are explanations that combine one or more of the earlier categories.

Scalability

The massive volumes of review data generated by online stores create scalability challenges. Some examples of these challenges include processing massive amounts of data, making sense of incomplete and unclear assessments, and successfully obtaining insightful information. One further thing that makes recommender systems not scalable is that they have to adapt to user tastes and product popularity, which might fluctuate due to things like seasonal demand, new product launches, or marketing efforts. These systems can't be kept up-to-date and useful unless they can update themselves in real-time to reflect these changes (Xiong et al., 2021). Scalability issues are exacerbated when different data types are integrated (Choi et al., 2022). In addition to text reviews, modern e-commerce platforms often collect audio, video, and image reviews, creating a multimodal dataset. Various processing methods are required for different types of data in order to extract valuable qualities that might be used to steer the recommendation process. To examine user-uploaded images, for example, you'll need image processing tools; for textual data, though, you may utilize natural language processing (NLP) methodologies. A recommender system's efficacy and scalability must not be compromised in the management of multimodality; rather, sophisticated data fusion systems and machine learning models must be employed.

Representation Learning

One of the biggest challenges in creating actual review – based recommender systems is learning effective representations of user behavior and product attributes from reviews. User reviews are commonly characterized by a lack of organization, excessive volume, and the usage of slang and emoticons. Data of this complexity makes it challenging to derive useful insights (Almahairi et al., 2015; Baral and Li, 2016; Cheng et al., 2018a). Unstructured text data is notoriously difficult to model, however several deep learning and NLP techniques have tried. Initial systems relied on word embedding methods and the Bag of Words (BoW) to extract data from reviews. On the other hand, these tactics writhed to extract textual representations, leading to subpar recommendation performance. The next step was to set up Convolutional Neural Networks (CNNs) to acquire review contextual representations. Despite their widespread use, CNN-based methods frequently failed to accurately discern reviewers' true preferences. That certain review components are more informative than others is shown by the fact that preferences change over

time. It was discovered that attention processes might help with this. Attention approaches like convolutional neural networks (CNNs) or recurrent neural networks (RNNs) increase recommendation performance and interpretability by collecting relevant parts of reviews. Concerning the accuracy of recommendations, interpretability, and learning of user/item representations, Differential Instruction (Khosla et al., 2020) in combination with graph neural networks has recently shown itself to be superior to the current traditional deep learning approach.

Privacy preserving

One major concern with recommendation systems is their potential access to personal information, such as online shopping and browsing histories, which might compromise users' privacy. However, users have the option to not have their information shared or utilized in any other way. Maintaining users' anonymity is a top priority for many $nder\ systems$, particularly those used in $online\ communities$. Numerous approaches have been offered previously, such as k-anonymity, $dif\ ferential\ privacy$, and $homomorphic\ encryption$. These kinds of frameworks might be broadly grouped into $three\ types$: (i) $techniques\ used$ in the primary recommendation method that modify the initial data (for instance, in the matrix factorization part)(Puglisi et al., 2015)); (ii) encryption-based schemes that introduce noise into the existing data (Tang & Wang, 2017) without influencing the final recommendation result; and (iii) methods that create new $matrix\ factorization\ algorithms\ under\ local\ differential\ privacy\ (LDP)$ (Shin et al., 2018). Group-based methods (D. Li et al., 2017)apply the k-anonymity principles to content recommender systems to preserve suggestion effectiveness without compromising user privacy. Navigation methods that use crowdsourced data collecting face similar difficulties(Tseng & Chau, 2016).

Another crucial issue in privacy preservation concerns servers and their characteristics, particularly when they are untrustworthy or have security flaws (vulnerabilities). As a consequence, gathering customer feedback may expose businesses to cyber liability due to data leaks (Cui & Wang, 2022). The majority of early research on customer data privacy in electric load monitoring systems (McLaughlin et al., 2011) focuses on non-intrusive monitoring methods to prevent possible privacy violations(Himeur et al., 2021). Subsequent studies use sampling to reduce the quantity of reference data gathered. For instance, the developers of (Englert 2015)eliminate unnecessary energy traces that don't provide anything the recommender system. In the same vein, privacy-preserving recommendation systems seek to protect users' privacy by concealing their rating comments from other users and/or servers (Badsha et al., 2017),(Jiang et al., 2019).

Ethical Considerations

Confidentiality, ethics, and bias are important considerations for review-based recommender systems that leverage user-generated material for customization and accuracy. The data and personal information included in user evaluations might potentially violate privacy if not managed properly or made public. There is a risk of systematic prejudice due to the fact that review language may mirror human prejudices. It is imperative that recommendation systems detect and mitigate these biases. Gaining user trust and staying in compliance with regulations depend on collecting, using, and consenting to data ethically. Technologies that *prioritize user privacy* must have *secure data* management, *anonymization*, and clear *user* permission. The development of algorithms that reduce bias and guarantee concept fairness is essential for the establishment of a trustworthy and inclusive digital environment (Hasan et al., 2024).

IX. Future recommendations

Under these circumstances, the changing terrain of artificial intelligence-based recommendation systems offers possible answers to go beyond current limitations and raise performance as follows:

• Improvement in Scalability Models: In order to address the inherent scalability challenges in maintaining large and diverse user data, further research should be directed on optimizing data processing pipelines. This may involve state-of-the-art techniques for combining various types of data (text, audio, images, etc.) or making the system more adaptable to changes in user behavior and item

- popularity as they happen in real-time. Scalable models may be created using incremental learning or distributed machine learning to accommodate growing datasets.
- Improve Representation Learning: Recognizer systems rely heavily on learning meaningful representations from user actions and product characteristics; so, future studies should explore more advanced representation learning methodologies. Graph Neural Networks and Contrastive Learning can help make it more accurate to represent what users like. Enhancing model correctness through the utilization of attention processes may be achieved by placing an emphasis on user-specific attributes and review context.
- Prioritizing Privacy Preservation: Since AI-led recommendations rely heavily on privacy, future
 systems should incorporate differential privacy, homomorphic encryption, and secure multi-party
 computing to preserve privacy. These solutions ensure the security of user data without compromising
 the accuracy of suggestions. In order to implement new privacy-aware algorithms that adhere to global
 data protection requirements like GDPR, it is necessary to find a middle ground between data security
 and system performance.
- Ethical AI and Reducing Bias: Therefore, ethical concerns and the elimination of biases in recommendation systems should be the focus of future research. This may be achieved with the use of fairness-aware models that lessen the algorithmic bias associated with sexism, racism, and other forms of discrimination. To avoid proposals that promote unfair treatment of some groups or the reinforcement of stereotypes, algorithms should be tested for biases and fairness enhancement on a regular basis.
- Explainability in Deep Learning Models: Despite deep learning models' immense potential to enhance recommendation accuracy, they are typically perceived as opaque models. These models should incorporate explainability to make it easier for users to understand how suggestions are generated. To make algorithmic decision-making more transparent, it is possible to use hybrid approaches that combine interpretable models with deep learning.
- Personalized and Multi-Channel Recommendations: Websites, mobile apps, social media, and voice
 assistants should all be built with multi-channel connection in the future for tailored suggestions. Make
 sure the ideas are targeted and effective in enhancing user engagement by combining contextual
 information with data specific to users from various sources.
- Real-Time Adaptation to Dynamic Environments: If recommendation systems want to remain relevant, they need to adapt to changing user preferences and trends over time. It is recommended that future AI models employ real-time learning techniques to process incoming data and dynamically adjust suggestions. To improve the relevance of recommendations, these models may incorporate context-aware algorithms that take into account both the user's current actions and external factors like time, location, or season.

X. Conclusion

The report provides an in-depth analysis of recommendation systems and explains how AI might influence user behavior in relation to digital suggestions and forecasts. To assess how well these algorithms forecast user preferences and provide personalization, we take a look at how they employed collaborative filtering, content-based techniques, and hybrid approaches. The research elucidates the significant ways AI has improved recommendation systems in terms of accuracy, scalability, and personalization, leading to a better tailored experience for users and additional opportunities for participation. The report also highlights the challenges that AI-driven systems face when it comes to scalability, model interpretability, privacy, and integrating user input from many channels. To maintain the honesty, fairness, and openness of recommendation systems in a rapidly evolving digital world, these obstacles must be overcome. Consequently, advancements in AI approaches related to recommendation systems must be continuous if the systems are to continuously improve their performance and meet the ever-changing demands of users while maintaining data security and ethical practices.

References

1. Abbas, A., Zhang, L., & Khan, S. U. (2015). A survey on context-aware recommender systems based on computational intelligence techniques. *Computing*, 97, 667–690.

- 2. Acilar, A. M., & Arslan, A. (2009). A collaborative filtering method based on artificial immune network. *Expert Systems with Applications*, *36*(4), 8324–8332.
- 3. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. *IEEE Transactions on Knowledge and Data Engineering*, 17(6), 734–749.
- 4. Agarwal, A., Mishra, D. S., & Kolekar, S. V. (2022). Knowledge-based recommendation system using semantic web rules based on Learning styles for MOOCs. *Cogent Engineering*, *9*(1), 2022568.
- 5. Al-Shamri, M. Y. H., & Bharadwaj, K. K. (2008). Fuzzy-genetic approach to recommender systems based on a novel hybrid user model. *Expert Systems with Applications*, *35*(3), 1386–1399.
- 6. Al Mubasher, H., Doughan, Z., Sliman, L., & Haidar, A. (2023). A novel neural network-based recommender system for drug recommendation. *International Conference on Engineering Applications of Neural Networks*, 573–584.
- 7. Ansari, Z. A., Sattar, S. A., & Babu, A. V. (2017). A fuzzy neural network based framework to discover user access patterns from web log data. *Advances in Data Analysis and Classification*, 11(3), 519–546.
- 8. Anushree, H., & Shashidhara, H. S. (2021). EFFICIENT RECOMMENDATION SYSTEM USING BERT TECHNOLOGY. *International Journal of Advanced Research in Engineering and Technology (IJARET)*, 12(2). https://doi.org/DOI: 10.34218/IJARET.12.2.2020.047
- 9. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., & Benjamins, R. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. *Information Fusion*, *58*, 82–115.
- 10. Asenjo, P. E. R. (2011). Web user behavior analysis. UNIVERSIDAD DE CHILE.
- 11. Badsha, S., Yi, X., Khalil, I., & Bertino, E. (2017). Privacy preserving user-based recommender system. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), 1074–1083.
- 12. Balabanović, M., & Shoham, Y. (1997). Fab: content-based, collaborative recommendation. *Communications of the ACM*, 40(3), 66–72.
- 13. Bedi, P., & Sharma, R. (2012). Trust based recommender system using ant colony for trust computation. *Expert Systems with Applications*, *39*(1), 1183–1190.
- 14. Bellogín, A., Castells, P., & Cantador, I. (2014). Neighbor selection and weighting in user-based collaborative filtering: a performance prediction approach. *ACM Transactions on the Web (TWEB)*, 8(2), 1–30.
- 15. Bigras, E., Jutras, M.-A., Sénécal, S., Léger, P.-M., Black, C., Robitaille, N., Grande, K., & Hudon, C. (2018). In AI we trust: characteristics influencing assortment planners' perceptions of AI based recommendation agents. *HCI in Business, Government, and Organizations: 5th International Conference, HCIBGO 2018, Held as Part of HCI International 2018, Las Vegas, NV, USA, July 15-20, 2018, Proceedings 5*, 3–16.
- 16. Burke, R. (2002). Hybrid recommender systems: Survey and experiments. *User Modeling and User-Adapted Interaction*, 12, 331–370.
- 17. Castaneda, J. A., Munoz-Leiva, F., & Luque, T. (2007). Web Acceptance Model (WAM): Moderating effects of user experience. *Information & Management*, 44(4), 384–396.
- 18. Chen, M.-H., Teng, C.-H., & Chang, P.-C. (2015). Applying artificial immune systems to collaborative filtering for movie recommendation. *Advanced Engineering Informatics*, 29(4), 830–839.
- 19. Chou, P.-H., Li, P.-H., Chen, K.-K., & Wu, M.-J. (2010). Integrating web mining and neural network for personalized e-commerce automatic service. *Expert Systems with Applications*, *37*(4), 2898–2910.
- 20. Cui, L., & Wang, X. (2022). A cascade framework for privacy-preserving point-of-interest recommender system. *Electronics*, 11(7), 1153.
- 21. De Gemmis, M., Lops, P., Semeraro, G., & Basile, P. (2008). Integrating tags in a semantic content-based recommender. *Proceedings of the 2008 ACM Conference on Recommender Systems*, 163–170.
- 22. Deldjoo, Y., Nazary, F., Ramisa, A., Mcauley, J., Pellegrini, G., Bellogin, A., & Noia, T. Di. (2023). A review of modern fashion recommender systems. *ACM Computing Surveys*, 56(4), 1–37.
- 23. Deshpande, M., & Karypis, G. (2004). Item-based top-n recommendation algorithms. ACM

- *Transactions on Information Systems (TOIS)*, 22(1), 143–177.
- 24. Devi, M. K. K., Samy, R. T., Kumar, S. V., & Venkatesh, P. (2010). Probabilistic neural network approach to alleviate sparsity and cold start problems in collaborative recommender systems. 2010 *IEEE International Conference on Computational Intelligence and Computing Research*, 1–4.
- 25. Dixon, L. J., Correa, T., Straubhaar, J., Covarrubias, L., Graber, D., Spence, J., & Rojas, V. (2014). Gendered space: The digital divide between male and female users in internet public access sites. *Journal of Computer-Mediated Communication*, 19(4), 991–1009.
- 26. Englert, F., Rettberg-Päplow, M., Kössler, S., Alhamoud, A., Nguyen, T. A. B., Böhnstedt, D., & Steinmetz, R. (2015). Enhancing user privacy by data driven selection mechanisms for finding transmission-relevant data samples in energy recommender systems. 2015 International Conference and Workshops on Networked Systems (NetSys), 1–6.
- 27. Fanca, A., Puscasiu, A., Gota, D. I., & Valean, H. (2020). Recommendation Systems with Machine Learning. *Proceedings of the 2020 21st International Carpathian Control Conference, ICCC 2020*. https://doi.org/10.1109/ICCC49264.2020.9257290
- 28. Fang, H., Zhang, D., Shu, Y., & Guo, G. (2020). Deep learning for sequential recommendation: Algorithms, influential factors, and evaluations. *ACM Transactions on Information Systems (TOIS)*, 39(1), 1–42.
- 29. Felfernig, A., & Burke, R. (2008). Constraint-based recommender systems: technologies and research issues. *Proceedings of the 10th International Conference on Electronic Commerce*, 1–10.
- 30. Felfernig, A., Friedrich, G., Jannach, D., & Zanker, M. (2011). Developing constraint-based recommenders. *Recommender Systems Handbook*, 187–215.
- 31. Feng, C., Liu, Z., Lin, S., & Quek, T. Q. S. (2019). Attention-based graph convolutional network for recommendation system. *ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 7560–7564.
- 32. Gabrani, G., Sabharwal, S., & Singh, V. K. (2017a). Artificial intelligence based recommender systems: A survey. *Communications in Computer and Information Science*, 721, 50–59. https://doi.org/10.1007/978-981-10-5427-3_6
- 33. Gabrani, G., Sabharwal, S., & Singh, V. K. (2017b). Artificial intelligence based recommender systems: A survey. *Advances in Computing and Data Sciences: First International Conference, ICACDS 2016, Ghaziabad, India, November 11-12, 2016, Revised Selected Papers 1*, 50–59.
- 34. Gheraibia, M. Y., & Gouin-Vallerand, C. (2019). Intelligent mobile-based recommender system framework for smart freight transport. *Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good*, 219–222.
- 35. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G.-Z. (2019). XAI—Explainable artificial intelligence. *Science Robotics*, 4(37), eaay7120.
- Guo, X., Wang, S., Zhao, H., Diao, S., Chen, J., Ding, Z., He, Z., Lu, J., Xiao, Y., & Long, B. (2023). Intelligent online selling point extraction and generation for e-commerce recommendation. AI Magazine, 44(1), 16–29.
- 37. Hargittai, E., & Hinnant, A. (2008). Digital inequality: Differences in young adults' use of the Internet. *Communication Research*, *35*(5), 602–621.
- 38. Hasan, E., Rahman, M., Ding, C., Huang, J. X., & Raza, S. (2024). based Recommender Systems: A Survey of Approaches, Challenges and Future Perspectives. *ArXiv Preprint ArXiv:2405.05562*.
- 39. Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. *ACM Transactions on Information Systems (TOIS)*, 22(1), 5–53.
- 40. Himeur, Y., Alsalemi, A., Bensaali, F., & Amira, A. (2021). Smart non-intrusive appliance identification using a novel local power histogramming descriptor with an improved k-nearest neighbors classifier. *Sustainable Cities and Society*, 67, 102764.
- 41. Hsu, C.-C., Chen, H.-C., Huang, K.-K., & Huang, Y.-M. (2012). A personalized auxiliary material recommendation system based on learning style on Facebook applying an artificial bee colony algorithm. *Computers & Mathematics with Applications*, 64(5), 1506–1513.
- 42. Hu, Y., Zhang, D., Ye, J., Li, X., & He, X. (2012). Fast and accurate matrix completion via truncated nuclear norm regularization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(9),

- 2117-2130.
- 43. Jiang, J.-Y., Li, C.-T., & Lin, S.-D. (2019). Towards a more reliable privacy-preserving recommender system. *Information Sciences*, 482, 248–265.
- 44. Kersbergen, B., & Schelter, S. (2021). Learnings from a Retail Recommendation System on Billions of Interactions at bol.com. 2021 IEEE 37th International Conference on Data Engineering (ICDE), 2447–2452. https://doi.org/10.1109/ICDE51399.2021.00277
- Khan, F., Al Rawajbeh, M., Ramasamy, L. K., & Lim, S. (2023). Context-aware and Click Sessionbased Graph Pattern Mining with Recommendations for Smart EMS through AI. *IEEE Access*, 11, 59854–59865.
- 46. Kim, K., & Ahn, H. (2008). A recommender system using GA K-means clustering in an online shopping market. *Expert Systems with Applications*, 34(2), 1200–1209.
- 47. Kiran, R., Kumar, P., & Bhasker, B. (2020). DNNRec: A novel deep learning based hybrid recommender system. *Expert Systems with Applications*, 144, 113054.
- 48. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. *Computer*, 42(8), 30–37.
- 49. Kravchenko, A. (2019). Evolution of Modern Recommender Systems with AI Techniques. *Editorial Board*, 44.
- 50. Krstic, M., & Bjelica, M. (2012). Context-aware personalized program guide based on neural network. *IEEE Transactions on Consumer Electronics*, 58(4), 1301–1306.
- 51. Kuanr, M., Mohapatra, P., & Choudhury, S. (2020). TSARS: A Tree-Similarity Algorithm-Based Agricultural Recommender System (pp. 387–400). https://doi.org/10.1002/9781119711582.ch20
- 52. Li, D., Lv, Q., Shang, L., & Gu, N. (2017). Efficient privacy-preserving content recommendation for online social communities. *Neurocomputing*, 219, 440–454.
- 53. Li, Y.-M., & Kao, C.-P. (2009). TREPPS: A trust-based recommender system for peer production services. *Expert Systems with Applications*, *36*(2), 3263–3277.
- 54. Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item collaborative filtering. *IEEE Internet Computing*, *7*(1), 76–80.
- 55. Liu, B., Xiong, H., Papadimitriou, S., Fu, Y., & Yao, Z. (2014). A general geographical probabilistic factor model for point of interest recommendation. *IEEE Transactions on Knowledge and Data Engineering*, 27(5), 1167–1179.
- 56. Liu, H., Hu, Z., Mian, A., Tian, H., & Zhu, X. (2014). A new user similarity model to improve the accuracy of collaborative filtering. *Knowledge-Based Systems*, *56*, 156–166.
- 57. Liu, P., Zhang, L., & Gulla, J. A. (2021). Multilingual review-aware deep recommender system via aspect-based sentiment analysis. *ACM Transactions on Information Systems (TOIS)*, 39(2), 1–33.
- 58. Lops, P., De Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. *Recommender Systems Handbook*, 73–105.
- 59. Luo, X., Zhou, M., Li, S., You, Z., Xia, Y., & Zhu, Q. (2015). A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method. *IEEE Transactions on Neural Networks and Learning Systems*, 27(3), 579–592.
- 60. Marcuzzo, M., Zangari, A., Albarelli, A., & Gasparetto, A. (2022). Recommendation systems: An insight into current development and future research challenges. *IEEE Access*, *10*, 86578–86623.
- McLaughlin, S., McDaniel, P., & Aiello, W. (2011). Protecting consumer privacy from electric load monitoring. Proceedings of the 18th ACM Conference on Computer and Communications Security, 87– 98.
- 62. Milovanovic, G. S. (2017). Hybrid content-based and collaborative filtering recommendations with {ordinal} logistic regression (1): Feature engineering. *Data Science Central*.
- 63. Mooney, R. J., & Roy, L. (2000). Content-based book recommending using learning for text categorization. *Proceedings of the Fifth ACM Conference on Digital Libraries*, 195–204.
- 64. Muñoz-Leiva, F., Hernández-Méndez, J., & Sánchez-Fernández, J. (2012). Generalising user behaviour in online travel sites through the Travel 2.0 website acceptance model. *Online Information Review*, *36*(6), 879–902.
- 65. Nguyen, T.-D. (2024). An approach to improve the accuracy of rating prediction for recommender

- systems. *Automatika*, 65(1), 58–72.
- 66. Nguyen, X. H., Trieu, L. H., & Nguyen, L. M. (2021). Investigating the Effects of Pre-trained BERT to Improve Sparse Data Recommender Systems. *JSAI International Symposium on Artificial Intelligence*, 287–295.
- 67. Pan, Y., He, F., & Yu, H. (2020). Learning social representations with deep autoencoder for recommender system. *World Wide Web*, 23(4), 2259–2279.
- 68. Pohan, H. I., Warnars, H. L. H. S., Soewito, B., & Gaol, F. L. (2022). Recommender System Using Transformer Model: A Systematic Literature Review. 2022 1st International Conference on Information System & Information Technology (ICISIT), 376–381.
- 69. Puglisi, S., Parra-Arnau, J., Forné, J., & Rebollo-Monedero, D. (2015). On content-based recommendation and user privacy in social-tagging systems. *Computer Standards & Interfaces*, 41, 17–27.
- 70. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). Grouplens: An open architecture for collaborative filtering of netnews. *Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work*, 175–186.
- 71. Ricci, F., Rokach, L., & Shapira, B. (2010). Introduction to recommender systems handbook. In *Recommender systems handbook* (pp. 1–35). Springer.
- 72. Rivas, A., Chamoso, P., González-Briones, A., Casado-Vara, R., & Corchado, J. M. (2019). Hybrid job offer recommender system in a social network. *Expert Systems*, *36*(4), e12416.
- 73. Sagi, O., & Rokach, L. (2020). Explainable decision forest: Transforming a decision forest into an interpretable tree. *Information Fusion*, *61*, 124–138.
- 74. Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. *Communications of the ACM*, 18(11), 613–620.
- 75. SanMiguel, P., & Sádaba, T. (2020). Digital user behavior in fashion e-commerce. a business model comparative study. In *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12204 LNCS* (Issue July 2020). Springer International Publishing. https://doi.org/10.1007/978-3-030-50341-3_39
- 76. Sebastiani, F. (2002). Machine learning in automated text categorization. *ACM Computing Surveys* (*CSUR*), 34(1), 1–47.
- 77. Serrano-Guerrero, J., Herrera-Viedma, E., Olivas, J. A., Cerezo, A., & Romero, F. P. (2011). A google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0. *Information Sciences*, *181*(9), 1503–1516.
- 78. Serrano, D., Li, H., Guillod, T., Wang, S., Luo, M., Sullivan, C. R., & Chen, M. (2022). Neural network as datasheet: Modeling BH loops of power magnetics with sequence-to-sequence LSTM encoder-decoder architecture. 2022 IEEE 23rd Workshop on Control and Modeling for Power Electronics (COMPEL), 1–8.
- 79. Shambour, Q., & Lu, J. (2012). A trust-semantic fusion-based recommendation approach for e-business applications. *Decision Support Systems*, *54*(1), 768–780.
- 80. Shi, Y., Larson, M., & Hanjalic, A. (2014). Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges. *ACM Computing Surveys (CSUR)*, 47(1), 1–45.
- 81. Shin, H., Kim, S., Shin, J., & Xiao, X. (2018). Privacy enhanced matrix factorization for recommendation with local differential privacy. *IEEE Transactions on Knowledge and Data Engineering*, 30(9), 1770–1782.
- 82. Snášel, V., & Kudelka, M. (2009). Web content mining focused on named objects. *Proceedings of the First International Conference on Intelligent Human Computer Interaction: (IHCI 2009) January 20–23, 2009 Organized by the Indian Institute of Information Technology, Allahabad, India, 37–58.*
- 83. Son, J., & Kim, S. B. (2017). Content-based filtering for recommendation systems using multiattribute networks. *Expert Systems with Applications*, 89, 404–412. https://doi.org/https://doi.org/10.1016/j.eswa.2017.08.008
- 84. Stephen, S. C., Xie, H., & Rai, S. (2017). Measures of similarity in memory-based collaborative filtering recommender system: A comparison. *Proceedings of the 4th Multidisciplinary International Social Networks Conference*, 1–8.

- 85. Tang, Q., & Wang, H. (2017). Privacy-preserving hybrid recommender system. *Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing*, 59–66.
- 86. Tseng, C.-M., & Chau, C.-K. (2016). On the privacy of crowd-sourced data collection for distance-to-empty prediction and eco-routing. *Proceedings of the Workshop on Electric Vehicle Systems, Data, and Applications*, 1–6.
- 87. Van den Oord, A., Dieleman, S., & Schrauwen, B. (2013). Deep content-based music recommendation. *Advances in Neural Information Processing Systems*, 26.
- 88. Vervier, L., Zeissig, E.-M., Lidynia, C., & Ziefle, M. (2017). Perceptions of Digital Footprints and the Value of Privacy. *IoTBDS*, 80–91.
- 89. Vozalis, M., & Margaritis, K. G. (2006). On the enhancement of collaborative filtering by demographic data. *Web Intelligence and Agent Systems: An International Journal*, 4(2), 117–138.
- 90. Wan, S., & Niu, Z. (2016). A learner oriented learning recommendation approach based on mixed concept mapping and immune algorithm. *Knowledge-Based Systems*, 103, 28–40.
- 91. Wang, X., & Wang, Y. (2014). Improving content-based and hybrid music recommendation using deep learning. *Proceedings of the 22nd ACM International Conference on Multimedia*, 627–636.
- 92. Wang, Z., Yu, X., Feng, N., & Wang, Z. (2014). An improved collaborative movie recommendation system using computational intelligence. *Journal of Visual Languages & Computing*, 25(6), 667–675.
- 93. Wolny, J., & Mueller, C. (2013). Analysis of fashion consumers' motives to engage in electronic word-of-mouth communication through social media platforms. *Journal of Marketing Management*, 29(5–6), 562–583.
- 94. Xi, W.-D., Huang, L., Wang, C.-D., Zheng, Y.-Y., & Lai, J. (2019). BPAM: Recommendation Based on BP Neural Network with Attention Mechanism. *IJCAI*, 3905–3911.
- 95. Xia, H., Li, J. J., & Liu, Y. (2020). Collaborative filtering recommendation algorithm based on attention GRU and adversarial learning. *IEEE Access*, 8, 208149–208157.
- 96. Yakhchi, S., Beheshti, A., Ghafari, S.-M., Orgun, M. A., & Liu, G. (2020). Towards a deep attention-based sequential recommender system. *IEEE Access*, 8, 178073–178084.
- 97. Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. *Complex and Intelligent Systems*, 7(1), 439–457. https://doi.org/10.1007/s40747-020-00212-w
- 98. Zhang, Y., & Chen, X. (2020). Explainable recommendation: A survey and new perspectives. *Foundations and Trends*® *in Information Retrieval*, *14*(1), 1–101.
- 99. Zhang, Z., Lin, H., Liu, K., Wu, D., Zhang, G., & Lu, J. (2013). A hybrid fuzzy-based personalized recommender system for telecom products/services. *Information Sciences*, 235, 117–129.
- 100.Zhao, L., Pan, S. J., & Yang, Q. (2017). A unified framework of active transfer learning for cross-system recommendation. *Artificial Intelligence*, 245, 38–55.
- 101.Zhao, R., Benbasat, I., & Cavusoglu, H. (2019). Transparency in Advice-Giving Systems: A Framework and a Research Model for Transparency Provision. *IUI Workshops*.
- 102.Zhao, Z., Fan, W., Li, J., Liu, Y., Mei, X., Wang, Y., Wen, Z., Wang, F., Zhao, X., & Tang, J. (2023). Recommender systems in the era of large language models (llms). *ArXiv Preprint ArXiv*:2307.02046.
- 103.Zhuang, Y., & Kim, J. (2021). A bert-based multi-criteria recommender system for hotel promotion management. *Sustainability*, *13*(14), 8039.