¹Jo Neil T. Peria, PhD

Perceived AI Regulation of A Tertiary Education Institution in Nueva Ecija, Philippines

Abstract: - The study was conducted to investigate the perceived regulation of Artificial Intelligence (AI) among faculty and students of a selected tertiary education institution in Nueva Ecija, Philippines. The study focused on three dimensions of the respondents' perceived AI regulation of the university: pedagogical, governance, and operational. Majority of the responding faculty members were between 20-30 years old, female and master's degree holders, while participating students, who were also mainly between 20-30 years old, were mostly male. Perceptions of AI regulation in the pedagogical dimension were generally neutral (faculty mean (\bar{x})) 3.27); (students mean $(\bar{x}) = 3.24$). Governance perception among the respondents was revealed to have a significant difference (t = 4.955, p < .001) between faculty ($\bar{x} = 3.42$) and students ($\bar{x} = 3.14$), with faculty perceiving governance aspect of AI regulation more positively. Similarly, operational perceptions were more favorable for responding faculty member ($\bar{x} = 3.56$) than students ($\bar{x} = 3.42$), (t = 2.990, p = .003), with concerns raised about insufficient training and resources. Statistical tests also showed weak but positive correlation between age and all three dimensions, namely pedagogical (r = 0.21, p = 0.047), governance (r = 0.17, p = 0.114) and operational (r = 0.26, p = 0.050) dimensions, suggesting older respondents held more favorable views. The tests also indicate a week positive correlation between sex and the pedagogical (r = 0.09, p = 0.291), governance (r = 0.05, p = 0.473), and operational (r = 0.13, p = 0.225) dimensions. These results suggest that respondents' perceptions of AI regulation varied very minimally between male and female respondents. Weak positive associations were also observed between department membership and perceptions of AI regulation: pedagogical (r = 0.20, p = 0.062), governance (r = 0.24, p = 0.087), and operational (r = 0.21, p = 0.098) dimensions. Educational attainment also showed weak positive associations with all three dimensions (pedagogical r = 0.21, governance r = 0.24, operational r = 0.24), indicating that higher education levels may correspond to more favorable perceptions. These findings highlight the need for clearer governance policies, targeted AI literacy training, stronger support systems, and inclusive institutional frameworks to ensure ethical, transparent, and effective AI integration in higher education.

Keywords: Artificial Intelligence (AI), AI Regulation, AI in Higher Education

I. INTRODUCTION

As artificial intelligence (AI) is rapidly integrated into higher education, debates have been sparked regarding its regulation, governance, and ethical implications. The widespread use of AI raises concern regarding academic integrity and transparency, as well as the institutional preparedness of higher education institutions to address its potential misuses (Selwyn, 2023). As universities continue to adopt AI, the evaluation of existing regulations becomes even more crucial to ensure that the use of AI aligns with ethical standards and education objectives. Without proper institutional policies, AI can possibly create academic risks such as the overreliance on technology, breach of academic integrity, and absence of proper AI evaluation models (Williamson & Eynon, 2020).

Existing and ongoing studies have continued to emphasize the importance of developing proper frameworks for the integration of AI in universities. There have been struggles for institutions to create, implement, and evaluate AI policies that cover issues such as authorship, accountability, and responsible deployment in classrooms (Zawacki-Richter et al., 2019). Furthermore, while some universities already have existing policies, there are still inconsistencies in requiring students to practice transparency in attributing AI-generated content (Dabis & Csáki, 2024). The effort to maintain academic integrity has been more complicated as studies have shown faculty members often lack adequate training to recognize and address AI-generated work (McGrath et al., 2023). A need for a structured support system for both faculty and students in terms of AI-related competencies is highlighted by the gap between AI policy formulation and practical enforcement (Schiff, 2021).

Furthermore, existing studies have established that universities that without clear AI policies may inadvertently encourage unethical practices, such as AI-assisted plagiarism or the submission of AI-generated work without proper attribution (Nagpal, 2024). Studies also show concern towards the possible bias of AI algorithms since some AI educational tools have been found to reinforce existing biases (Bender et al., 2021), which, in turn, may affect fairness of student evaluation and grading. To address such concerns, there is a growing need for a proactive

 $^{^1}$ Nueva Ecija University of Science and Technology - Nueva Ecija, Philippines Copyright © JES 2024 on-line : journal.esrgroups.org

approach that includes continuous monitoring of AI applications, regular policy updates, and transparent discussions regarding AI within universities (Seldon & Abidoye, 2018).

Regardless of these concerns, AI continues to present significant opportunities to innovate the current education landscape if it is properly implemented, regulated, and evaluated. Universities that adopt AI along with proper governance models are more likely to practice educational sustainability (Shwedeh et al., 2024). Studies have proposed that a viable solution to oversee AI's role in academia is the creation of dedicated AI policies and governing bodies (Seldon & Abidoye, 2023).

This study examines the perceived AI regulation of a selected tertiary education institution, focusing on three critical dimensions: pedagogical, governance, and operational. The pedagogical dimension assesses faculty and student perspectives on AI's role in education, including its impact on learning experiences, academic integrity, and curriculum design. Prior research suggests that while AI has the potential to improve student engagement and streamline instructional methods, its unchecked use may lead to over-reliance and challenges in assessing genuine student performance (Lewis et a., 2024; Mukhtar et al., 2025). The governance dimension explores how universities regulate AI usage, including policy clarity, ethical considerations, and institutional oversight. Studies indicate that many academic institutions lack well-defined AI governance frameworks, leading to inconsistencies in policy implementation and enforcement (Williamson & Eynon, 2022). Lastly, the operational dimension investigates the practical aspects of AI adoption, including resource allocation, faculty training, and institutional support structures. Successful AI implementation requires not only technological investment but also systematic planning and continuous evaluation (Zawacki-Richter et al., 2019).

This study aims to provide a fundamental findings about the perceived AI regulation to serve as future support for AI integration, development of ethical learning practices, enhancement of institutional governance, and optimization of operational efficiency.

II. METHODS

A. Research Design

This study employed a quantitative research design In order to collect measurable data on how the university faculty and students view AI regulation in the pedagogical, governance, and operational domains. This study intended to provide quantifiable evidence to inform policy recommendations and strategic interventions for responsible AI integration in higher education by examining different perspectives, enabling statistical analysis of trends and patterns in stakeholder perspectives (Al-Zahrani, 2024; Zawacki-Richter et al., 2019).

B. Research Locale and Sample

The study was conducted in all the campuses and off-campuses of a selected higher education institution in Nueva Ecija, Philippines.

The respondents of this study were the faculty and students of the selected higher education institution. A total of 200 faculty members and 800 university students participated in the study. Moreover, a total of 15 different colleges and departments participated in the study, covering a variety of academic experiences and viewpoints regarding AI usage and regulation. Stratified random sampling was utilized to ensure representation from each subgroup and enhance the precision of research findings (Babbie, 2020; Iliyasu & Etikan, 2021; Hayes, 2021).

C. Research Instrument

The instrument used in this study was designed by the researcher to measure the perception of AI regulation of university faculty and students in terms of pedagogical dimension, governance dimension, and operational dimension.

The survey questionnaire consisted of 35 questions. The questionnaire comprised four sections: background information of the respondents and the three dimensions measured—pedagogical dimension, governance dimension, and operational dimension.

The questions were rated on a five (5) point Likert Scale intended to be determined and assessed. The response choices for each item in the Likert scales of each section were one (1) Strongly Disagree, two (2) Disagree, three (3) Neutral, four (4) Agree, and five (5) Strongly Agree.

The questionnaire underwent expert validation and review, as well as a pilot testing with a sample of 80 participants to ensure that it consistently captures the intended data, enhance the accuracy of results, and support the robustness of findings (Babbie, 2020; Taherdoost, 2016; Devellis & Thorpe, 2021).

The panel of validators was composed of five (5) experts with relevant expertise to the research area. The first one is an information technology (IT) expert with work experience in artificial intelligence and machine learning. The second one is an IT program graduate who works as a part time faculty for a higher education and a part time lecturer. They ensured the technical accuracy and ethical framing of the questionnaire. Another one is a lecturer who handles the educational technology courses in a higher education institution. He/she assessed the alignment of the items with current university practices. Another validator is an experienced academic administrator with experience on university governance and institutional policies. Furthermore, a doctorate degree holder on language who is a technical writing specialist also evaluated the clarity, objectivity, and accessibility of the research instrument. Collectively, these validators ensured that the questionnaire is reliable, comprehensive, and appropriate for studying AI regulation in the context of tertiary education.

The reliability of the instrument was also evaluated using the internal consistency method. To assess the reliability, Cronbach's Alpha was employed. Good internal consistency and instrument reliability are shown by the results of the analysis.

D. Research Procedure

The researcher conceptualized the research problems and instrument in alignment with the AI Ecological Education Policy framework developed by Chan (2023). This framework organizes key areas of AI educational integration into three parts—Pedagogical, Governance, and Operational.

The researcher wrote a letter of authorization the president and administrators of the selected higher education institution, as well as to the respective heads of the university departments to show appreciation and request that their faculty members and students be included as research participants.

To accommodate the respondents from every campus and off-campus, the questionnaires were administered both in-person and online. This part of the procedure included the assessment of the respondents' background information and their perceived AI regulation of the selected tertiary education institution.

The respondents were informed about the purpose, scope, and voluntary nature of the study. Informed consent was obtained from each participant. To protect their privacy, all responses were kept anonymous and were presented as group data. The name of the university has also been withheld to maintain institutional confidentiality. All data were stored securely and used solely for academic purposes.

The statistical treatments used were Pearson's r and spearman's rho correlation to test the relationships of the background information and AI regulation dimensions and independent samples t-test were used to test the difference among them

III. RESULTS AND DISCUSSION

A. Age of the Respondents

Table 1. Summary based on the Age of the Respondents

	Facu	lty	Students		
	Frequency	Percent	Frequency	Percent	
20 - 30 years old	80	40	784	98	
31 - 40 years old	66	33	16	2	
41 - 50 years old	34	17	0	0	
51 - 60 years old	14	7	0	0	
61 years old and above	6	3	0	0	
Total	200	100	800	100	

According to the summary and percentage of respondents' ages, faculty members between the ages of 20 and 30 (40%) were the main respondents of the study, followed by faculty members between the ages of 31 - 40 (33%), 41 - 50 (17%), and 51 - 60 (7%). The age group with the lowest percentage of respondents was 61 years of age and older (3%). Similarly, for the students, the most common respondents were from the age group of 20 - 30 years old (98%), followed by those between the ages 31 - 40 years old (2%). There were no student respondents (0%) from the groups 41 - 50 years old, 51 - 60 years old, and 61 years old and above,

B. Sex of the Respondents

Table 2. Summary Based on the sex of the Respondents

	Facul	lty	Students		
	Frequency	Frequency Percent		Percent	
Male	94	47	462	58	
Female	106	53	338	42	
Total	200	100	800	100	

The summary and percentages of the sex of the respondents who are part of the faculty were 47% male and 53% female. On the other hand, for the respondents who were students, there was 58% male and 42% female. The greater percentage of female faculty member align with the data of World Bank (2023) which shows that the Philippines have a 51.2% female population in higher education. On the other hand, according to the Philippine Statistics Authority (2010), there are higher levels of education among female Filipinos compared to their male counterparts. The distribution of the student respondents' sex contrast this information. Furthermore, the demographic of student respondents according to sex also contrast with a study that reveals women made up over half of the student body in a higher education institution, which is in line with the overall state of the Philippine educational system, where more women participate in and finish formal education from elementary school to higher education (Gumba, 2016). This implies that there is an ongoing shift in the gender distribution of university students in the Philippines

C. Department of the Respondents

Table 3. Summary Based on the Department of the Respondents

	Faculty		Stude	nts
	Frequency	Percent	Frequency	Percent
College of Agriculture	6	3	24	3
College of Architecture	8	4	40	5
College of Arts and Sciences	12	6	48	6
College of Criminology	14	7	40	5
College of Education	30	15	144	18
College of Engineering	24	12	120	15
College of Industrial Technology	4	2	32	4
College of Information and	20	10	96	12
Communications Technology				
College of Management and Business	28	14	120	15
Technology				
College of Nursing	14	7	64	8
College of Public Administration and	14	7	48	6
Disaster Management				
Graduate School	8	4	24	3
Institute of Linguistics and Literature	6	3	0	0
Institute of Physical Education	6	3	0	0
Laboratory High School	6	3	0	0
Total	200	100	800	100

The percentage summary of the department of the respondents' educational attainment show that, among the responding faculty members, majority are from the College of Education which comprise 15% of the faculty participants. This is followed by the relatively close percentage of faculty participants from the College of Management and Business Technology which comprised 14% of the responding faculty members and from the College of Engineering which comprised 12%. A policy brief on the profile of higher education institution faculty of the Philippines (Yee et al, 2022) show that the most common field among tertiary education faculty is education science and teacher training. Furthermore, according to the aforementioned brief, business and administration related fields are the second most common fields for higher education faculty. Engineering faculty member ranked fifth in the policy brief.

As for the participating students, majority also came from the College of Education which comprised 18% of the total student respondents, similarly followed by the College of Engineering and College of Management and Business Technology with both comprising 15% of the student respondents. This is in line with the data of the aforementioned policy brief. In the data, the three highest fields with the most students enrolled are business administration and related fields, education science and teacher training, and engineering fields. These presented data reflect the nature of Philippine higher education which is concentrated on education, business, and engineering.

D. Educational Attainment of the Respondents

Table 4. Summary of the Educational Attainment of the Respondents

	Frequency	Percent
Bachelor's Degree	12	6
Master's Degree	146	73
Doctorate Degree	42	21
Total	200	100

Among the responding faculty members, majority are master's degree holders which comprise 73% of the faculty participants. On the other hand, bachelor's degree holders are only 6% while the remaining 21% are doctorate degree holders. The respondents' educational attainment deviate from the results of a study where the number of doctorate degree holders and master's degree holders are close (Ambong et al., 2020). However, the data of the mentioned study with only 8% bachelor's degree holders is similar to the studys' demographic of 6%.

E. Pedagogical Dimension of Perceived AI regulation

Table 5. Mean of the Respondents on their Perception of University AI Regulation in terms of the Pedagogical Dimension

, ,		Faculty		Students
Statements	Mean	Verbal Description	Mean	Verbal Description
1. Responsible integration of generative AI in higher education has the potential to enhance the teaching-learning process.	4.21	Very Positive	4.35	Very Positive
2. Generative AI technology can help improve academic performance.	4.25	Very Positive	4.32	Very Positive
3. Students are well-educated on the ethical usage and implications of using AI technology.	2.45	Negative	2.67	Neutral
4. Students have maintained academic integrity despite the rise of AI technologies.	1.66	Very Negative	2.27	Negative
5.Students use AI technology in ways that support their motivation to learn.	1.71	Very Negative	1.98	Negative
6. AI Integration in research will be helpful as long as there is transparency and boundaries.	4.05	Positive	4.14	Positive
7. The current curricula sufficiently address the implications of AI in learning.	3.37	Neutral	3.19	Neutral
8. University assessments are restructured to minimize AI's potential negative impact on academic integrity.	3.31	Neutral	2.45	Negative
9. Teachers have the ability to accurately identify and evaluate AI-generated works.	2.56	Negative	2.48	Negative
10. The use of AI technology in education prepares students for an AI-driven workplace.	4.42	Very Positive	4.39	Very Positive
Overall Mean	3.27	Neutral	3.24	Neutral

Table 5 presents the mean of the perceived AI regulation of the respondents in terms of the pedagogical dimension. The survey results revealed a mixed perspective on current university AI regulations in terms of the pedagogical dimension. Respondents generally showed a very positive perception of AI's potential to enhance the pedagogical process and improve the students' academic performance, which aligns with studies that highlight AI's ability to automate tasks, personalize learning, and give real-time feedback (Kimondo et al., 2023; Muhie & Wolde, 2023).

However, the respondents show unfavorable opinions towards the current state of academic integrity and ethical use of AI, causing contrasting perspectives. These concerns are consistent with studies stating that current AI detection methods are often inadequate and that AI systems, such as ChatGPT, can be misused for cheating (Sullivan et al., 2023).

The findings also revealed neutral perceptions regarding the adjustment of university curricula and assessments, suggesting that, while AI is transforming education, frameworks and policies may not have fully adjusted to its impact (Abbasi et al., 2024). Furthermore, the findings also show negative perception regarding instructors' ability to recognize AI-generated work, as supported by studies indicates that both inexperienced and seasoned teachers encountered challenges in identifying texts created by AI (Fleckenstein et al., 2024).

F. Governance Dimension of Perceived AI regulation

Table 6. Mean of the Respondents on their Perception of University AI Regulation in terms of the Governance Dimension

Statements		Faculty	Students	
		Verbal Description	Mean	Verbal Description
1. The university should have governing bodies responsible for AI regulation.	4.32	Very Positive	4.01	Positive
2. The university has clear principles regarding the use of AI technologies.	3.36	Neutral	3.15	Neutral
3. The university takes action in the identification and prevention of AI-related academic dishonesty.	3.37	Neutral	3.21	Neutral
4. Ethical considerations about AI are at the forefront of governance discussions within the university.	3.31	Neutral	2.99	Neutral
5. The university takes action to prevent the misuse of AI technologies in academic settings.	4.57	Very Positive	4.11	Positive
6. Reporting AI-related academic misconduct is straightforward and well-organized.	2.52	Negative	2.46	Negative
7. Transparency in the regulation of AI technologies at the university is observed.	1.72	Very Negative	1.66	Very Negative
8. A clear framework is established for attributing AI contributions in student and faculty work.	2.51	Negative	2.24	Negative
9. Regular assessments of AI regulations should be conducted to evaluate their effectiveness.	4.49	Very Positive	4.18	Positive
10. Staff and students are well-educated about their rights and responsibilities concerning AI use.	3.98	Positive	3.37	Neutral
Overall Mean	3.42	Positive	3.14	Neutral

The findings revealed a range of perceptions regarding the governance of AI regulation, with strong support for the creation of governing bodies tasked with overseeing AI use. Previous studies (Al-Zahrani & Alasmari, 2024) have highlighted the significance of specialized oversight of artificial intelligence in universities to enable ethical and responsible AI use implementation.

While the results showed that the university faculty and students acknowledge the university's efforts to prevent AI misuse, they expressed neutrality regarding the clarity of AI-related policies, the identification and prevention of academic dishonesty, and whether ethical considerations are prioritized in governance discussions (Al-Zahrani & Alasmari, 2024).

Furthermore, perceived lack of AI usage transparency within the university was emphasized by the results, a trend consistent with prior research indicating that while some universities mandate disclosure of AI use, comprehensive frameworks ensuring transparency and ethical compliance remain limited (Tang et al., 2023). An established framework or policy for crediting AI-generated content and a system for reporting AI-related academic misconduct was deemed lacking by the perception of the respondents. Inconsistencies in AI detection and the absence of standardized guidelines for attributing AI-generated content have been emphasized by existing studies (Perkins et al., 2023; Cecilia, 2023), leading to confusion across academic disciplines.

Despite these reservations, the findings also revealed that the respondents still believe that the university takes steps to prevent AI abuse on campus and support frequent evaluations of AI use and regulations to gauge their efficacy. Academic recommendations that support ongoing evaluation frameworks to adjust governance policies to new issues have been published in existing works (Al-Zahrani & Alasmari, 2024).

These results also suggest a lack of AI education programs due to the neutral perception about faculty and students' knowledge of AI-related rights and responsibilities. Existing studies highlighted the need for AI ethics education to promote responsible AI use and thorough comprehension of its moral and legal implications (Kwon, 2023; Ghotbi & Ho, 2021).

G. Operational Dimension of Perceived AI regulation

Table 7. Mean of the Respondents on their Perception of University AI Regulation in terms of the Operational Dimension

		Faculty	Students	
Statements	Mean	Verbal Description	Mean	Verbal Description
1. The university administration oversees the practical implementation of AI on campus.	2.45	Neutral	2.57	Neutral
2. The university's integration of AI involves minimizing disruptions to learning.	4.15	Positive	4.12	Positive
3. University stakeholders are involved in AI-related decisions and actions	4.19	Positive	4.06	Positive
4. Faculty and student feedback are actively sought regarding AI technologies.		Very Positive	4.17	Positive
5. Faculty members receive comprehensive training on the integration and evaluation of AI in education.		Very Positive	4.15	Positive
6. Students receive comprehensive training on the application of AI in education.		Negative	2.57	Negative
7. Resources are allocated for the effective implementation of AI technologies.	3.32	Neutral	3.19	Neutral

8. A dedicated support system is in place to troubleshoot AI-related issues.	2.59	Negative	2.41	Negative
9. Assessments to evaluate the impact of AI on teaching and learning are being implemented.	2.50	Negative	2.47	Negative
10. There is continuous adoption of AI in the university.	4.58	Very Positive	4.49	Very Positive
Overall Mean	3.56	Positive	3.42	Positive

The findings revealed a range of perceptions regarding the governance of AI regulation, with strong support for the creation of governing bodies tasked with overseeing AI use. Previous studies (Al-Zahrani & Alasmari, 2024) have highlighted the significance of specialized oversight of artificial intelligence in universities to enable ethical and responsible AI use implementation.

While the results showed that the university faculty and students acknowledge the university's efforts to prevent AI misuse, they expressed neutrality regarding the clarity of AI-related policies, the identification and prevention of academic dishonesty, and whether ethical considerations are prioritized in governance discussions (Al-Zahrani & Alasmari, 2024).

Furthermore, perceived lack of AI usage transparency within the university was emphasized by the results, a trend consistent with prior research indicating that while some universities mandate disclosure of AI use, comprehensive frameworks ensuring transparency and ethical compliance remain limited (Tang et al., 2023). An established framework or policy for crediting AI-generated content and a system for reporting AI-related academic misconduct was deemed lacking by the perception of the respondents. Inconsistencies in AI detection and the absence of standardized guidelines for attributing AI-generated content have been emphasized by existing studies (Perkins et al., 2023; Cecilia, 2023), leading to confusion across academic disciplines.

Despite these reservations, the findings also revealed that the respondents still believe that the university takes steps to prevent AI abuse on campus and support frequent evaluations of AI use and regulations to gauge their efficacy. Academic recommendations that support ongoing evaluation frameworks to adjust governance policies to new issues have been published in existing works (Al-Zahrani & Alasmari, 2024).

These results also suggest a lack of AI education programs due to the neutral perception about faculty and students' knowledge of AI-related rights and responsibilities. Existing studies highlighted the need for AI ethics education to promote responsible AI use and thorough comprehension of its moral and legal implications (Kwon, 2023; Ghotbi & Ho, 2021).

H. Relationship of Profile and Perception of University AI Regulation

Table 8. Relationship o	of Profile and Percept	ion of University AI	Regulation
-------------------------	------------------------	----------------------	------------

Profile		Pedagogical	Governance	Operational
FIOIIIE		Dimension	Dimension	Dimension
Λσο	r – value	0.21	0.17	0.26
Age	p – value	0.047	0.114	0.050
Sex	r – value	0.09	0.05	0.13
Sex	p – value	0.291	0.473	0.225
Donartmant	r – value	0.20	0.24	0.21
Department	p – value	0.062	0.087	0.098
Education	r – value	0.21	0.24	0.24
Education	p – value	0.092	0.069	0.088

The Pearson's r and spearman's rho correlation analyze the relationship between respondents' profiles and their perceptions of university AI regulation across the pedagogical, governance, and operational dimensions reveals several noteworthy patterns.

A weak positive correlation was observed between age and all three dimensions: pedagogical (r = 0.21, p = 0.047), governance (r = 0.17, p = 0.114), and operational (r = 0.26, p = 0.050). This suggests that as age increases, there is a slight tendency for perceptions to become more favorable, particularly in the pedagogical and operational domains, though only the pedagogical and operational correlations approached statistical significance (p < .05).

In terms of sex, the results show very weak correlations with the pedagogical (r = 0.09, p = 0.291), governance (r = 0.05, p = 0.473), and operational (r = 0.13, p = 0.225) dimensions. These findings imply minimal differences between male and female respondents in how they perceive AI regulation in the university context. However, a study by () not find evidence that teachers' age, gender identity, level of education, or the subject they teach explain their perceived benefits or concerns about AI-EdTech. The absence of attitudinal variation significantly explained by socio-demographic and subject characteristics is remarkable.

For department affiliation, weak positive correlations were also noted with perceptions of AI regulation: pedagogical (r = 0.20, p = 0.062), governance (r = 0.24, p = 0.087), and operational (r = 0.21, p = 0.098). Although none of the correlations were statistically significant, the pattern suggests that departmental differences may play a role in shaping views on AI, potentially due to varying degrees of AI integration across academic disciplines.

Lastly, educational attainment also exhibited weak positive correlations with perceptions in the pedagogical (r = 0.21, p = 0.092), governance (r = 0.24, p = 0.069), and operational (r = 0.24, p = 0.088) dimensions. While not statistically significant, these correlations indicate that respondents with higher levels of education tend to perceive AI regulation more favorably, possibly due to increased exposure to institutional policies or AI-related training.

However, according to a study by Viberg et al. (2024), which spanned six countries, there is no proof that instructors' perceived concerns regarding AI in educational technology are described by their age, gender identity, educational background, or subject matter. It is noteworthy that there is no attitudinal variation that can be adequately accounted for by subject and sociodemographic factors. This implies that, although the established relationships are relatively weak, there is possibly a different trend regarding AI in the Philippines.

Overall, while the correlations are generally weak and mostly non-significant, the data hint at modest associations between demographic variables—particularly age and education—and how university stakeholders perceive AI regulation in pedagogical, governance, and operational domains

H. Difference in Perception of University AI Regulation as Assessed by Teachers and Students

Table 9. Difference in Perception of University AI Regulation as Assessed by Teachers and Students

Group	Mean	Standard Deviation	t-value	p-value	Verbal Description
Pedagogical Dimension					
Teachers	3.27	.67	0.540	0.500	M. G. G.
Students	3.24	.71	0.540	0.589	Not Significant
Governance Dimension		<u>.</u>			_
Teachers	3.42	.84	4.955	0.000	Ci anifi a and
Students	3.14	.68	4.933	0.000	Significant
Operational Dimension	-				
Teachers	3.56	.56	2.000	0.002	G: 'C'
Students	3.42	.60	2.990	0.003	Significant

An independent samples t-test was conducted to determine whether there were significant differences in the perception of university AI regulation between teachers and students across the pedagogical, governance, and operational dimensions.

For the pedagogical dimension, the results revealed no statistically significant difference between teachers (M = 3.27, SD = 0.67) and students (M = 3.24, SD = 0.71), t = 0.540, p = .589. This indicates that both groups hold relatively similar views regarding the educational impact of AI integration, suggesting shared experiences or mutual awareness of AI's pedagogical implications.

However, a significant difference was found in the governance dimension, where teachers (M = 3.42, SD = 0.84) rated their perception of AI regulation significantly higher than students (M = 3.14, SD = 0.68), t = 4.955, p < .001. This suggests that faculty members may perceive the university's governance mechanisms—such as policies, ethical oversight, and administrative responses—as more defined or effective than students do.

Similarly, a significant difference emerged in the operational dimension, with teachers (M = 3.56, SD = 0.56) showing more favorable perceptions than students (M = 3.42, SD = 0.60), t = 2.990, p = .003. This indicates that faculty members may view the university's practical implementation of AI, including training, resources, and support systems, more positively than students.

Having no significant difference with the faculty and students' view perceived pedagogical dimensions of AI regulation, the research findings aligned with multiple studies that establish how learners and educators similarly view AI to have great potential in the teaching learning process (Mandal & Mete, 2023; Lee & Song, 2024). However, in comparing the perceptions of students and educators, there is a lack of focus on the governance dimension and operational dimension of AI in higher education. The study's findings illuminate that there is a difference between how university students and faculty member view these aspects. This implies that there is possibly a lack of uniform understanding of how AI is integrated, utilized, and evaluated within the tertiary education institution.

In summary, while perceptions of AI's pedagogical role are aligned between teachers and students, significant differences exist in their views on governance and operational aspects, with teachers reporting more favorable perceptions in both areas

CONCLUSION

Based on the presented findings, the following conclusions were drawn: (1) The demographic profile of the respondents revealed that the majority of the participating faculty members were aged 20–30 years old, female, and master's degree holders. Similarly, most of the student respondents were also from the 20-30 age group and but had a greater male percentage. Research respondents came from various departments across 15 colleges of the selected higher education institution in Nueva Ecija; (2) The respondents' overall assessment based on their perceived AI regulation in terms of pedagogical dimension, both faculty and students, showed a generally neutral perception. They recognized the benefits of AI in enhancing the teaching-learning process and academic performance. However, there were strong negative perceptions regarding academic integrity and ethical usage of AI; (3) On the governance dimension of perceived AI regulation, the faculty exhibited a more positive perception compared to students. The respondents mainly supported the creation of governing bodies and recognized efforts to prevent misuse of AI. However, there were perceived gaps in transparency, ethical considerations, reporting mechanisms, and frameworks for attributing AI-generated content; furthermore, (4) the respondents' overall assessment based on their perceived AI regulation in terms of the operational dimension revealed that both faculty and students expressed positive views regarding AI integration minimizing disruptions and involving stakeholders. However, there were concerns about the lack of training for both groups, insufficient support systems, and limited resource allocation for AI-related implementation; (5) A significant relationship was found between age and the respondents' perception of AI regulation in the pedagogical and operational dimensions. Likewise, educational attainment showed a weak positive correlation with favorable AI regulation perception. There were no significant differences based on sex or department; and lastly, (6) Notably, there was a statistically significant difference in the perception of AI regulation in the governance and operational dimensions between faculty and students. Faculty

members viewed governance and operational practices more favorably than students, indicating a disparity in institutional awareness and access to support.

The following recommendations are hereby raised: (1) There is a need to develop, strengthen, and clearly communicate AI governance policies that outline ethical standards, attribution frameworks, and penalties for misuse. These should be disseminated across all campuses and departments to ensure uniform understanding and compliance; (2) Comprehensive training programs should be provided to both faculty and students to improve AI literacy, ethical usage, and evaluation techniques. The training department must focus on the competencies of recognizing AI-generated content and addressing academic integrity concerns; (3) A formal committee, office, or governing body should be created to oversee the implementation and evaluation of AI within the university. The governing body will be responsible for the regulation of AI practices and policies within the tertiary education institution; (4) There should be an investment in AI-related infrastructure, support systems for troubleshooting, and regular assessments to evaluate AI's educational impact. Adequate resources and technical assistance must be available to both teachers and learners; (5) There is a need to encourage regular dialogue among university stakeholders to gather insights and recommendations on AI use to enhance inclusivity, trust, and the relevance of implemented policies; and, (6) an institutional guidebook or manual should be created as a reference for proper use, ethical considerations, evaluation methods, and reporting procedures related to AI in education. This manual may serve as a benchmark for other higher education institutions aiming to regulate AI integration effectively.

REFERENCES

- [1] Abbasi, B. N., Wu, Y., & Luo, Z. (2024). Exploring the impact of artificial intelligence on curriculum development in global higher education institutions. Education and Information Technologies.
- [2] IAl-Zahrani, A. M., & Alasmari, T. M. (2024). Exploring the impact of artificial intelligence on higher education: The dynamics of ethical, social, and educational implications. Humanities and Social Sciences Communications, 11(1).
- [3] Ambong, R.M., Lumbo, S., Dagos, R.A. Nielo, M., Ferrer, V., & Roldan, A. (2020). Looking at the Research Productivity of a Level III State College in the Philippines Towards Attaining University Status. SSRN Electronic Journal.
- [4] Babbie, E. (2020). The Practice of Social Research. Cengage Learning.
- [5] Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610-623.
- [6] Bobrytska, V. I., Krasylnykova, H. V., Ladohubets, N. V., Vorona, L. I., & Lysokon, I. O. (2023). Involvement of stakeholders in the transformation of educational services via taking advantage of extra-curriculum educational activities in the settings of education reform. International Journal of Educational Methodology, 9(1), 107-122.
- [7] Chan, C.K.Y. (2023). A comprehensive AI policy education framework for university teaching and learning. Int J Educ Technol High Educ 20, 38.
- [8] Cecilia, C. (2023). Is AI changing the rules of academic misconduct? An in-depth look at students' perceptions of "AI-giarism."
- [9] Dabis, A., & Csáki, C. (2024). AI and ethics: Investigating the first policy responses of higher education institutions to the challenge of generative AI. Humanities and Social Sciences Communications, 11(1)
- [10] DeVellis, R.F. and Thorpe, C.T. (2021) Scale Development: Theory and Applications. Sage Publications, Thousand Oaks.
- [11] Fleckenstein, J., Meyer, J., Jansen, T., Keller, S. D., Köller, O., & Möller, J. (2024). Do teachers spot AI? Evaluating the detectability of AI-generated texts among student essays. Computers and Education: Artificial Intelligence, 6, 100209.
- [12] George, B., & Wooden, O. (2023). Managing the strategic transformation of higher education through artificial intelligence. Administrative Sciences, 13(9), 196–196.
- [13] Ghotbi, N., & Ho, M. T. (2021). Moral awareness of college students regarding artificial intelligence. *Asian Bioethics Review*, *13*(4), 421–433.
- [14] Gumba, B. (2016). Gender Equality in Education and Student Participation in a Higher Education Institution: A Case in the Philippines. 2. 421-427.

- [15] Hayes, A. (2021). Stratified Random Sampling. Retrieved October 4, 2021, from Scientific Research Publishing.
- [16] Iliyasu, R., & Etikan, I. (2021). Comparison of quota sampling and stratified random sampling. Biometrics & Biostatistics International Journal, 10(1), 24–27.
- [17] Kimondo, C., Wandeto, L., Indimuli, D., & Ercertin, A. (2023). The impact of A.I on teaching and learning. *London Journal of Social Sciences*, 6,
- [18] Korte, S.-M., Cheung, W. M.-Y., Maasilta, M., Kong, S.-C., Keskitalo, P., Wang, L., Lau, C. M., Chi, J., & Gu, M. M. (2024). Enhancing artificial intelligence literacy through cross-cultural online workshops. *Computers and Education Open*, 6, 100164–100164.
- [19] Kwon, J. (2023). A study on ethical awareness changes and education in artificial intelligence society. *Revue d'Intelligence Artificielle*, 37(2), 341–345.
- [20] Lee, S., & Song, K.-S. (2024). Teachers' and Students' Perceptions of AI-Generated Concept Explanations: Implications for Integrating Generative AI in Computer Science Education. Computers and Education Artificial Intelligence, 7, 100283–100283.
- [21] Lewis Jr., H., Johnson, S. M., & Phillips, E. (2024). Redefining Student Achievement. Advances in Educational Technologies and Instructional Design, 17–36.
- [22] Mandal, Rini & Mete, Jayanta. (2023). TEACHERS' AND STUDENTS' PERCEPTION TOWARDS INTEGRATION OF ARTIFICIAL INTELLIGENCE IN SCHOOL CURRICULUM: A SURVEY.
- [23] McGrath, C., Cerratto Pargman, T., Juth, N., & Palmgren, P. J. (2023). University teachers' perceptions of responsibility and artificial intelligence in higher education - An experimental philosophical study. Computers and Education: Artificial Intelligence, 4, 100139.
- [24] Mijan, A., Hasan, M.R., & Hasan, M. (2025). AI and academia: Navigating the adoption of artificial intelligence in universities. *International Journal of Technology in Education and Science (IJTES)*, 9(1), 54-65.
- [25] Muhie, Y., & Wolde, A. (2023). Integration of artificial intelligence technologies in teaching and learning in higher education. *Science and Technology*, 10, 1–7.
- [26] Mukhtar, N. M., Syeda, N., Zaka, N. I., & Naeem, N. S. (2025). Impact of AI Dependence on Procrastination among University Students. 3(1), 246–257
- [27] Nagpal, H. (2024). Policies, procedures, and guidelines: Are universities effectively ensuring AI (academic integrity) in the era of generative AI?.
- [28] Nikoçeviq-Kurti, E., & Bërdynaj-Syla, L. (2024). ChatGPT integration in higher education: Impacts on teaching and professional development of university professors. *Educational Process: International Journal*, 13(3), 22–39.
- [29] Okolo, C. T. (2024). Beyond AI hype: A hands-on workshop series for enhancing AI literacy in middle and high school students. *Proceedings of the 2024 ACM Conference on Human Factors in Computing Systems*, 86–93.
- [30] Perkins, M., Roe, J., Postma, D., McGaughran, J., & Hickerson, D. (2023). Detection of GPT-4 generated text in higher education: Combining academic judgement and software to identify generative AI tool misuse. *Journal of Academic Ethics*, 22(1), 89–113.
- [31] Rico-Bautista, D., Medina-Cardenas, Y., Coronel-Rojas, L. A., Cuesta-Quintero, F., Maestre-Gongora, G., & Guerrero, C. D. (2021). Smart university: Key factors for an artificial intelligence adoption model. Advances in Intelligent Systems and Computing, 153–166.
- [32] Sanusi, I. T., Agbo, F. J., Dada, O. A., Yunusa, A. A., Aruleba, K. D., Obaido, G., Olawumi, O., Oyelere, S. S., & Centre for Multidisciplinary Research and Innovation (CEMRI). (2024). Stakeholders' insights on artificial intelligence education: Perspectives of teachers, students, and policymakers. *Computers and Education Open*, 7, 100212.
- [33] Schiff, D. (2021). AI ethics education: Preparing students for a world of intelligent machines. AI & Society, 36(4), 897-915.
- [34] Seldon, A., & Abidoye, A. (2018). The fourth education revolution: Will artificial intelligence liberate or infantilize humanity? University of Buckingham Press.
- [35] Selwyn, N. (2023). Should robots replace teachers? AI and the future of education. Polity Press.
- [36] Shwedeh, F., Salloum, S. A., Aburayya, A., Fatin, B., Elbadawi, M. A., Al Ghurabli, Z., & Al Dabbagh, T. (2024). AI Adoption and Educational Sustainability in Higher Education in the UAE. Studies in Big Data, 201–229.
- [37] Sullivan, M., Kelly, A., & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. *Journal of Applied Learning & Teaching*, 6(1).
- [38] Taherdoost, H. (2016). Validity and reliability of the research instrument; how to test the validation of a questionnaire/survey in a research. International Journal of Academic Research in Management, 11(1), 28–36

- [39] Tang, A., Li, K., Kin On Kwok, Cao, L., Luong, S., & Wilson, W. S. Tam. (2023). The importance of transparency: Declaring the use of generative artificial intelligence in academic writing. *Journal of Nursing Scholarship*, 56(2).
- [40] Tuomi, I. (2018). The Impact of Artificial Intelligence on Learning, Teaching, and Education. *MINISTERIO de EDUCACIÓN*.
- [41] Viberg, O., Cukurova, M., Feldman-Maggor, Y. *et al.* What Explains Teachers' Trust in AI in Education Across Six Countries?. *Int J Artif Intell Educ* (2024).
- [42] Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in AI in education. Learning, Media and Technology, 45(3), 223–235.
- [43] Yee, K., Ducanes, G., and C. David. 2018. Graduate Degrees of Higher Education Faculty in the Philippines: Status and Ways Forward. UP-Center for Integrative and Development Studies.
- [44] Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39