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Abstract: - The reliability of boiler feed pumps (BFPs) is critical to the continuous operation of steam power plants, where unplanned 

downtime can lead to significant economic and operational losses. This study proposes an artificial intelligence (AI)-driven fault 

prediction model utilizing logistic regression (LR) within a supervised learning framework. The model targets the classification of 

BFP operational states into four categories: Normal, Abnormal, Early Maintenance, and Annual Maintenance. The primary aim is to 

implement an end-to-end predictive maintenance solution using TinyML technology, thereby enabling low-latency, edge-based fault 

detection on resource-constrained hardware. A dataset comprising five critical features—temperature, pressure, flow, running hours, 

and alerts—was collected and preprocessed. The model was trained using TensorFlow in a cloud environment and subsequently 

optimized through quantization into TensorFlow Lite (TFLite) format for deployment on an ESP32 microcontroller. Comparative 

evaluation revealed that while the cloud-based TensorFlow model achieved a classification accuracy of 99%, the TFLite model on 

ESP32 preserved a respectable 95% accuracy with significantly reduced inference latency and memory footprint. This paper also 

includes a comparative literature analysis across anomaly detection, healthcare diagnostics, and smart agriculture, establishing the 

broader applicability and competitiveness of the proposed approach. Through architectural illustrations, performance benchmarks, and 

deployment case studies, the research demonstrates that integrating TinyML with predictive maintenance for BFPs can deliver real-

time decision-making capabilities while minimizing computational overhead. These findings suggest that such lightweight, edge-

deployable AI systems hold strong potential for industrial automation, particularly in developing countries seeking scalable, cost-

effective digital transformation strategies. 

Keywords: Predictive Maintenance, TinyML Deployment, Logistic Regression, Edge Computing (ESP32), Industrial 

Fault Detection, Boiler Feed Pump Monitoring, Embedded AI Systems 

 

 

I.  INTRODUCTION 

Boiler feed pumps (BFPs) serve as critical components in steam power plants, playing a central role in ensuring 

the constant circulation of feedwater from the condenser to the boiler drum. The Sabiya Steam Power Plant, one of 

Kuwait’s major power generation facilities, relies heavily on the uninterrupted operation of its BFP systems to 

maintain consistent thermal cycles and energy output. In the context of the Rankine cycle, even minor anomalies 

in feed pump performance can disrupt pressure equilibrium, impair heat transfer, and lead to cascading failures 

across the system. Conventional methods of preventive maintenance with the capability of immediate detection of 

faults and low false positive rates are achieving low levels of this capability due to delayed detection and high false 

positive rates. 

In the context of Kuwait’s entire power generation network, the importance of the Sabiya Steam Power Plant 

is further heightened. Figure 1 shows that Sabiya is in the northern coastal area of the country close to the Iraq 

border and one of the six main power plants across the country. Key oil and gas reserves and coastal access place 

it as a vital node of Kuwait’s national grid. Sabiya also contributes greatly to the base load and the peak load 

management along with Doha East, Doha West, Shuaiba and Az-zour South, and Shuwaikh. To manage such plants 

in Kuwait’s climate, which is arid, and under increasing energy demands, especially in cases of high for the thermal 

and mechanical intensive stress, there is an urgent need for robust fault prediction and maintenance strategies. 
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In the context of the operational intelligence landscape, especially for embedded systems in energy intensive 

industries, ML, and even more so TinyML, have emerged. Traditional AI frameworks, though effective in the 

cloud, require massive computational resources which are not suitable for the field level pump control system with 

low power resources. This challenge is addressed by TinyML, since it leads to the deployment of trained ML 

models on microcontrollers like the ESP32, ensuring that the intelligence is transferred away from the main 

computer and into the edge handling it in real time. This should fit well in the global trend towards distributed edge 

computing in Industry 4.0 enclosures [1], and fits well in the growing need for cheap, autonomous, and scalable 

solutions in power infrastructure maintenance. 

 

 
Figure 1: Geographical Distribution of Major Power Plants in Kuwait 

 

It is widely used in industrial fault detection using logistic regression (LR), which has been shown to be robust 

and performs well in classification. Compared to deep neural networks, LR models can achieve high accuracy 

when learned on well-designed features, and thus natural for embedded inference. This is done using a multivariate 

dataset built from historical plant telemetry including temperature, pressure, flow rate, operational runtime, and 

alert logs, for classifying the BFP’s operational state using LR’s predictive capacity. A model, trained and validated 

through cloud-based environment such as Google Colab, is then quantized and TFLite format to deploy on ESP32 

microcontroller. This workflow guarantees that the model can generate low latency predictions at the edge by 

quietly making minimal power and memory footprint. 

The potential use of TinyML in the area of predictive maintenance has been shown in recent literature in diverse 

domains. For examples, Warden and Situnayake [3] showed that TinyML can be practically used to detect audio 

and sensor anomalies for edge, and Kumar Yash [4] showed that TinyML is applicable for smart agriculture to 

detect diseases in plants. The prediction of heart disease risk can also incorporate the uses of the edge optimized 

logistic models in the healthcare sector with minimal latency for support in fast clinical decisions [4, 5]. These 

studies emphasize the reasons of versatility and performance potential of TinyML embedded logistic regression to 

the resource constrained environments. Nonetheless, these advancements in developing these systems do not seem 

to have been fully integrated into high stakes, centrifugal energy infrastructure, particularly in the Gulf region. 

This paper addresses this gap by presenting a comprehensive methodology for designing, training, and 

deploying a TinyML-based predictive maintenance system for BFPs in the Alsabiya Power Plant. The present study 

not only evaluates performance across cloud and edge for setting benchmarks, but also introduces a novel 

evaluation framework including accuracy, inference latency, memory usage, and actual inference per second. The 

outcomes aid in filling the gap between the first and widening extant discourse of digitalizing legacy infrastructure 

via edge AI through a scalable blueprint of building smart maintenance systems on steam power plants worldwide. 
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II. COMPARATIVE LITERATURE ANALYSIS 

To contextualize the performance and practical significance of the proposed predictive maintenance model for 

the Alsabiya Power Plant’s boiler feed pump, a comparative analysis was conducted across three major application 

domains where TinyML and lightweight machine learning models have demonstrated meaningful deployment: 

anomaly detection in industrial systems, edge-based diagnostics in healthcare, and smart agriculture. This cross-

domain benchmarking provides insights into the generalizability, scalability, and technological positioning of the 

current research within the broader field of embedded AI. 

In the realm of IoT security, sensor nodes with constrained computational resources especially those operating 

without intermediary gateways are highly susceptible to diverse cyberattacks such as denial of service (DoS) and 

man-in-the-middle (MITM). While Javed et al. [14] demonstrated the efficiency of embedding a decision-tree-

based intrusion detection system (IDS) on a Raspberry Pi, machine learning-driven IDS solutions in IoT 

environments have predominantly been deployed at the network edge or cloud servers, where resource availability 

is significantly higher. Consequently, existing datasets typically focus on features extracted from traffic flows at 

these more capable nodes. 

To address the pressing need for on-sensor defense, was introduce the Intrusion Detection in Smart Homes 

(IDSH) dataset, tailored to microcontroller-based IoT devices and capturing features directly at the sensor level. 

Leveraging this dataset, a Tree-based IDS was embedded into a smart thermostat to enable real-time, on-device 

threat detection. Experimental evaluations revealed that IDS achieved 98.71% accuracy for binary classification in 

just 276 microseconds of inference time and 97.51% accuracy for multi-class classification in 273 microseconds 

[14]. Real-world tests confirmed the thermostat’s ability to autonomously detect both DoS and MITM attacks 

without relying on any intermediate gateway or cloud infrastructure. This research underscores the feasibility and 

effectiveness of deploying lightweight, tree-based IDS solutions at the sensor node, thereby reducing latency and 

enhancing the overall security posture of resource-constrained IoT systems. 

Similarly, in a study by Iqbal et al. [15], CNN were employed to detect mechanical anomalies in CNC machines 

using acoustic signals. Although the model attained 100% accuracy, it proved unsuitable for microcontroller 

deployment due to its reliance on kernel functions, which are computationally intensive. In contrast, our use of 

logistic regression avoids the kernel complexity, enabling smooth execution on low-power hardware while still 

delivering high classification accuracy. 

In the field of healthcare, where both latency and interpretability are critical, logistic regression models have 

been widely adopted for risk prediction. For example, a study by Khan et al. [5] proposed an IoT framework for 

heart disease prediction using a Modified Deep Convolutional Neural Network (MDCNN). The system utilized 

wearable devices to monitor blood pressure and electrocardiogram (ECG) signals, achieving an accuracy of 98.2%. 

However, the study did not report specific inference times, which are crucial for real-time applications. In contrast, 

our ESP32 deployment achieved 95% accuracy with a latency of 12 milliseconds, highlighting the efficiency of 

microcontroller-based inference when models are effectively compressed and optimized using TinyML 

frameworks. 

Additionally, edge deployment in healthcare often prioritizes model explainability due to ethical considerations 

and regulatory requirements. The interpretability of logistic regression coefficients makes it an ideal candidate, as 

seen in our implementation, where each input parameter (e.g., temperature, pressure) maps transparently to a class 

probability. This reinforces the value of LR not only in performance but also in auditability, especially important 

in critical infrastructure and healthcare scenarios [16]. 

In the context of smart agriculture, TinyML has been increasingly applied for disease detection and 

environmental monitoring. A notable project by Kumar Yash [4] developed a convolutional neural network (CNN) 

model trained on 16,011 tomato leaf images across 10 disease categories. Utilizing TensorFlow Lite and Edge 

Impulse, the model was optimized for deployment on edge devices, achieving an accuracy of 89.6% [4]. This 

implementation demonstrates the feasibility of deploying CNNs on resource-constrained devices for real-time 

agricultural diagnostics. However, CNNs inherently demand more memory and processing power than logistic 

regression models applied to structured tabular data, as in our study. While CNN-based solutions are better suited 

for visual recognition tasks, structured sensor-driven environments, such as power plants, benefit more from the 

simplicity and speed of regression models. 
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The comparative summary of these studies is presented in Table 1 below: 

Table 1: Comparative Summary 

Study Domain Model Accuracy (%) Latency (ms) 

Javed et al. (2024) [14] Industrial Anomaly Decision Tree 97.51 273 

Iqbal et al. (2022) [15] CNC Machinery CNN 100 N/A 

Khan et al. (2021) [5] Healthcare Diagnostics MDCNN 98.2 N/A 

Kumar Yash (2021) [4] Smart Agriculture CNN 89.6 ~38 

This Study Boiler feed pump  Logistic Regression 95 ~12 

 

This comparative analysis illustrates that the proposed solution not only competes favorably with existing 

works across domains but also excels in critical dimensions such as latency and memory efficiency hallmarks of 

practical TinyML deployments. Furthermore, while most comparative models focus on binary classification, the 

multi-class approach adopted in this research provides granular insight into machine health status, enabling 

predictive interventions rather than reactive repairs. This functional richness, when coupled with the low-resource 

demands of ESP32 hardware, sets the proposed model apart in both innovation and operational utility. 

In summary, this study fills an important gap in the literature by bringing together structured sensor data, logistic 

regression modeling, and TinyML deployment to address predictive maintenance in a high-stakes energy 

environment. While other domains have validated the feasibility of TinyML, few have rigorously applied it to 

steam power systems, particularly in the Middle East. Thus, the proposed approach serves as a blueprint for future 

implementations aiming to democratize AI for sustainable, scalable, and efficient infrastructure monitoring. 

 

III. ARTIFICIAL INTELLIGENCE CONCEPTS 

Among industrial domains, Artificial Intelligence (AI) has rapidly developed to become a transformative force 

as tools are created to automate complex, human, decision making processes. Predictive maintenance using AI is 

at its core training models to identify patterns in machine behavior in order to predict likelihood of defects before 

they progress to failures [25]. Learn paradigms are central to the adaptability of AI it is supervised learning, 

unsupervised learning, and reinforcement learning. Each paradigm takes a different methodological approach given 

the nature of data and desired outcome. 

This study follows the supervised learning paradigm where the model map input features to known output 

values based on the labeled datasets. The most important machine learning paradigm in supervised learning trains 

model on a labeled dataset and predicts the outcomes or classify the data over image, speech recognition, natural 

language processing, medical diagnoses and financial forecasting [27]. However, unsupervised learning tries to 

discover hidden patterns or clustering in the unlabeled data [28] by means of techniques of dimensionality reduction 

or clustering. More recently, a more dynamic approach of reinforcement learning is where an agent learns to make 

decisions by exploring an environment and receiving feedback in the form of rewards or penalties [6]. In the world 

of adaptive systems and anomaly detection in the face of unpredictability, unsupervised and reinforcement learning 

are promising, but supervised learning is the most practical, and most reliable, of options when dealing with 

structured historical data associated with clearly defined fault states. 

It is well known that Logistic Regression (LR) is a classical supervised learning algorithm, which is often being 

utilized for binary and multi class classification tasks. It uses sigmoid (or SoftMax) function of a linear combination 

of input features to model the probability that a given input belongs to the given class. Yet, simplicity aside, LR 

has proved extraordinarily effective in media such as medical diagnosis, fraud detection, and the monitoring of 

equipment (particularly when datasets are not too large or features are engineered with feature-specific knowledge). 

LR is an interpretable model, in contrast to the black box models like deep neural networks, which are more 

advantageous in the industrial setting since transparency and auditability of AI decisions are fundamental. 

In this study, a multi-class logistic regression model is applied to classify boiler feed pump health status into 

four classes namely Normal, Abnormal, Early Maintenance and Annual Maintenance. Therefore, LR is justified 

not only for its classification power but also to facilitate its deployment on memory constrained microcontrollers 

using TinyML. The model covers the overall pump behavior in various operational conditions by using five input 

parameters: temperature, pressure, flow, running hours, and alerts. Supervised learning was done on this structured 

and labeled dataset and the models could be trained in the cloud and then converted to a lightweight TFLite format 

for embedded inference on ESP32. 
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This implementation brings along an important piece to the puzzle, as TinyML is incorporated. Ultra-low 

power/embedded machine learning models including their related operations are called TinyML [8], deployed at 

the edge of the network, where the devices are very minimal or non-internet connected. Once the data source is 

inferred, the inference can be done in real time, eliminating latency and the reliance on the centralized cloud servers. 

Then TinyML models are quantized and optimized for running on less than kilobytes of memory, and running in 

microsecond level inference speed. In particular, such capabilities are very useful in energy sector applications 

where decisions must be made instantaneously to save equipment from failure and minimize downtime. The basis 

of fault prediction framework in this study is the synergy between supervised learning, the use of logistic regression, 

and Tiny ML. 

IV. SYSTEM DESCRIPTION 

This research has been carried out in the operational context of Sabiya Steam Power plant, a key public 

organization of the Kuwait national electricity grid. The plant is in the north of the country just beyond the Persian 

Gulf and consists of several gas and steam turbines. In particular, the boiler feed pump (BFP) is a critical subsystem 

which is crucial for transporting high pressure water from the condenser to the boiler without any interruption or 

fluctuations in supply. These functions are on the circuit of Rankine cycle, when water is converted into superheated 

steam to rotate turbine and produce electricity. BFPs are subject to high mechanical and thermal stress, and are 

prone to degradation and failure, leading to total energy conversion process interruption and shutdowns that are 

costly to the organization. 

These risks were addressed by the design and development of a predictive maintenance system using the 

telemetry data acquired from BFP operation logs. The input dataset is made up of five measurable parameters: 

temperature (°C), pressure (bar), flow rate (L/min), cumulative running hours and active system alerts. This has 

been performed for features that directly correlated with the mechanical integrity and operational efficiency of the 

pump. For example, increases in temperature that are not normal or sudden delivery pressure drops, are early signals 

for cavitation or sealing failure, while running excessively with no maintenance is a warning that impellers and 

bearings are wearing out. Binary diagnostic information provided by alert logs serve as additional information in 

the system when it reports an observed fault. 

The pump was categorized into four classes based on the health status of the pump. Ideal operational condition 

has all parameters within threshold limits, which is denoted by the normal class. Early sign of mechanical stress or 

environmental anomaly is represented in the Abnormal class. The Early Maintenance class includes the suggestion 

of noncritical but escalating wear needing attention at some point. The Annual Maintenance class denotes routine 

overhaul requirement done based on running hours and safety regulations. They can formulate the problem as a 

multi class one, which allows for more nuanced intervention strategies that allow maintenance teams to work 

without excess down time to maintain the environment. 

The dataset was then preprocessed i.e., normalized, missed value imputed, and labels encoded once collected. 

The processed data was used to train the logistic regression model on the cloud using TensorFlow. It predicts on 

the validation set 99% accuracy. Then the model was converted to TensorFlow Lite (TFLite) version through 

quantization aware training, thus reducing the model size and optimizing it for ESP32 microcontroller, a low power 

device commonly used in embedded AI applications. Inference testing was performed using Arduino IDE and 

TinyML model achieved an accuracy of 95% and latency of a few milliseconds which is sufficient for real time 

anomaly detection during deployment. 

By showing the feasibility of applying lightweight AI for prediction of faults in critical power infrastructure, 

this end-to-end implementation from data acquisition to edge deployment is presented. Furthermore, it addresses 

the scalability issue since the ESP32 based model is less expensive and easier to replicate the same among multiple 

units that constitutes the plant. Further, the following sections present details about the model architecture, 

evaluation metrics, and comparative analysis which assure the potential of using the TinyML based predictive 

maintenance systems in modern energy operations. 

V. MODEL DEVELOPMENT 

The boiler feed pump (BFP) at the Alsabiya Steam Power Plant required a meticulous, multi stage process of 

data preparation, model training, optimization and embedded deployment to develop a predictive maintenance 

model for the boiler feed pump (BFP). This section details the entire model development pipeline and how the 

choices made at each stage balance tradeoffs between prediction accuracy, computational efficiency, and 

deployment feasibility. 
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The data acquisition and beginning of pipes consisted of five operational parameters, such as the temperature, 

pressure, flow rate, cumulative running hours and alert status. Domain expertise and prior literature on rotating 

machinery health diagnostics [9] rendered these variables to be good predictors. Preprocessing was used on raw 

data to make sure the data was of good quality and consistent normalization using minmax scaling. The output was 

categorized into four different types of health being Normal, Abnormal, Early Maintenance, Annual Maintenance 

and then we applied label encoding just to make it easier to understand. 

After preparing the dataset, model training was performed in Google Colab cloud environment. This selection 

of LR was driven by its feature in multi-class classification and its low computational complexity, making LR a 

desirable choice for a subsequent deployment on a constrained microcontroller [10]. The model is implemented in 

Python using the scikit-learn library and is trained with an 80 / 20 train test split. The classification accuracy of 

99% from the trained model was corroborated by high precision, recall and F1 scores across all four classes. The 

confusion matrix analysis confirmed only small number of misclassifications; thus, class separability was strong. 

Following this, model optimization for embedded deployment with TensorFlow Lite (TFLite) was studied. To 

achieve this, the trained LR model had to be converted to a TFLite format using TensorFlow’s TFLiteConverter 

with quantization awareness [30]. Model was quantized to 8-bit integers from the initial 32-bit floats, allowing the 

model to have a significant reduction in model size and compute requirements with a very small accuracy drop 

(from 99% to 98%). However, transformation is key for TinyML as ESP32 embedded system tends to have limited 

RAM (520KB) and flash memory (4MB). It also reduced inference time, which is necessary for real time predictive 

maintenance tasks in operational setting. 

The TFLite model was converted and deployed to an ESP32, an affordable and low power edge computing 

platform. For the model, we use TensorFlow Lite for Microcontrollers library [31] that is specifically built to use 

TensorFlow Lite APIs directly from the hardware and load the model loaded into the Arduino IDE. Time taken for 

inference was measured using internal timestamps on average taking 12 milliseconds to process 1 inference. The 

model maintained an accuracy of 95% despite the hardware constraints, confirming that the logistic regression-

based TFLite model could perform reliably on edge devices without relying on cloud infrastructure. 

 

 
Figure 2: End-to-End Workflow of TinyML-Based Predictive Maintenance Model for Boiler Feed Pump 

 

To further illustrate the pipeline, Figure 2 presents the end-to-end TinyML-based development workflow. It 

encapsulates each phase from raw data input, cloud-based training, TFLite conversion, and ESP32 deployment. 

Figure 2 details the embedded system's operational logic, showing how the microcontroller continuously ingests 
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sensor data, performs inference, and generates fault alerts when anomalies are detected. These diagrams provide a 

visual summary of the complete life cycle of the fault prediction model, aligning technical implementation with 

conceptual understanding. 

 

 
 

Figure 3: Operational Workflow of Fault Detection and Alert System Using TinyML on ESP32 

 

Overall, this model development process showcases the integration of conventional machine learning 

techniques with modern embedded AI deployment strategies. The success of this LR-based solution reinforces the 

viability of leveraging lightweight models for predictive maintenance tasks in industrial settings where power 

efficiency, response time, and reliability are paramount. More importantly, it validates the potential of TinyML to 

democratize AI by making intelligent systems accessible and deployable even in infrastructure-limited 

environments, such as remote or underfunded energy facilities. 

 

VI. EVALUATION AND RESULTS 

 

A rigorous evaluation was conducted to assess the predictive model’s performance across three deployment 

stages: the cloud-based TensorFlow model (TF), the optimized TensorFlow Lite version (TFLite), and the 

embedded implementation on an ESP32 microcontroller (TinyML). The evaluation focused on four primary 

metrics: classification accuracy, inference latency, model file size, and inference throughput. These indicators 

collectively determine the feasibility and efficiency of deploying machine learning models in resource-constrained 

environments such as industrial edge devices. 

The cloud-based TensorFlow implementation, trained on a balanced dataset, yielded an outstanding 

classification accuracy of 99%. The confusion matrix in Figure 4 shows that out of all test instances, only two 

samples were misclassified, one from the Normal class labeled as Annual Maintenance and one from Annual 

Maintenance misclassified as Abnormal. These minimal misclassifications demonstrate excellent class separability 

and affirm that logistic regression, when trained on well-prepared features, can outperform more complex models 

in structured datasets [11]. 
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Figure 4: Confusion Matrix of Fault Classification Using TensorFlow Model (Cloud Execution) 

 

Further analysis using Receiver Operating Characteristic (ROC) curves confirmed the model’s ability to 

differentiate between all four classes with perfect fidelity. As illustrated in Figure 5, each class-specific curve 

reached the upper-left corner of the graph, and the Area Under the Curve (AUC) value for all categories was 1.00. 

The zoomed-in ROC view in Figure 6 corroborates this performance even at low false positive rates, validating the 

model’s robustness across sensitivity thresholds. These results align with previous findings in industrial AI 

literature that logistic regression, when supported by quality data engineering, can offer high interpretability and 

exceptional performance [12]. 

 

 
Figure 5: ROC Curve for Multi-Class Classification of Boiler Feed Pump Health Status 

 

 
Figure 6: Zoomed-In ROC Curve for Fine-Grained Analysis of Multi-Class Classification Performance 
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Training dynamics are illustrated in Figure 7, which shows a consistently decreasing loss curve for both training 

and validation sets. The two curves converge around epoch 20, suggesting rapid learning without significant 

overfitting. This convergence indicates effective generalization, further supported by the stable validation metrics 

across epochs. 

 

 
Figure 7: Training and Validation Loss Curve for Logistic Regression Model 

 

After optimizing the model into TFLite, the inference accuracy marginally decreased to 98%, as seen in Table 3. 

This minor drop is an expected trade-off for the considerable improvements in memory efficiency and inference speed. 

The TFLite model’s size was compressed from 6,958 bytes (TF) to just 1,172 bytes an 83% reduction, as presented 

in Table 2. More impressively, the average inference latency dropped from ~103 ms in TF to just ~2.4 ms in TFLite, 

enhancing its potential for real-time deployment. 

 

Table 2: Classification report  for TF 

 
 

Table 3: Comparative Evaluation of Model Performance Across TensorFlow, TFLite, and ESP32 Deployments 

 TF TFL ESP32 

Accuracy % 99% 98% 95% 

Latency (ms) ~ 103 ms ~ 2.4 ms ~ 12 ms 

File size 6958 bytes 1172 bytes 7912 bytes 

Inference per second ~ 9.9 ~ 434 ~ 76 

 

The most critical test came during deployment on the ESP32 microcontroller, where the model exhibited a 

further reduction in classification accuracy to 95%, still well within acceptable limits for operational use in 

industrial environments. As shown in the confusion matrix and classification report in Figure 8 and Table 3, the 

embedded model maintained high precision and recall across all four classes, with slight performance degradation 

in the Abnormal and Early Maintenance categories. This may stem from quantization-induced variance or 

hardware-level computational limits of the ESP32, which possesses limited floating-point computation capabilities. 
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Figure 8: prediction in TFLite 

 

 

Table 4: Classification report  for TFLite 

 

 

Despite this, the ESP32 implementation demonstrated low-latency inference (~12 ms) and an impressive 

inference rate of ~76 inferences per second, allowing for near-real-time decision-making. The full comparative 

metrics are consolidated, and their visualization highlights the key trade-offs across platforms (see Table 2 above). 

Importantly, while TinyML introduces modest compromises in prediction fidelity, it vastly enhances portability, 

energy efficiency, and local autonomy. 

These results demonstrate that a lightweight logistic regression model, when carefully engineered and 

optimized, can provide high-performance fault detection capabilities even in constrained embedded environments. 

Unlike more complex models like convolutional or recurrent neural networks, which may achieve marginally 

higher accuracy but at the cost of memory and power consumption, logistic regression offers a favorable balance 

for industrial applications. Furthermore, the ESP32’s deployment success supports recent trends in decentralized 

computing, where edge devices are becoming integral to real-time control and diagnostics in industrial Internet of 

Things (IIoT) systems [13]. 

VII. DISCUSSION 

 

This study's findings underscore the feasibility and practical utility of deploying a logistic regression model for 

fault prediction in boiler feed pumps (BFPs) using TinyML technology. Indeed, the model’s success, especially on 

resource constrained hardware such as the ESP32 microcontroller, constitutes a key paradigm shift in industrial 

monitoring [32], which has instead shifted towards the paradigm of edge intelligence [33]. This shift is not only 

timely, given the increasing complexity of power infrastructure, but also essential in achieving cost-efficiency, 

system resilience, and real-time responsiveness. 

The results obtained through the experimental pipeline reinforce the suitability of logistic regression (LR) for 

structured sensor-driven data. In the cloud environment, the LR model achieved a classification accuracy of 99%, 
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supported by high precision and recall across all four output classes: Normal, Abnormal, Early Maintenance, and 

Annual Maintenance. These performance metrics demonstrate the model’s ability to correctly classify diverse 

operational conditions with near-perfect fidelity. The robustness of the classification model is further reinforced by 

its Receiver Operating Characteristic (ROC) curve analysis. As presented in Figure 6, each class-specific ROC 

curve demonstrates exceptional separation capability between true positives and false positives, with all curves 

sharply approaching the top-left corner of the graph. The Area Under the Curve (AUC) values for all four classes 

Normal, Abnormal, Early Maintenance, and Annual Maintenance are recorded at 1.00, indicating perfect 

classification performance without any overlap between decision boundaries. 

The performance of the proposed logistic regression model against broader standards of classification accuracy. 

This benchmarked visualization not only validates the high-performance claim of the model but also strengthens 

its credibility as a fault predictor capable of reliably distinguishing between nuanced operational states [17]. 

 

A critical aspect of these findings lies in the comparative performance analysis across three deployment 

environments: TensorFlow (TF), TensorFlow Lite (TFLite), and ESP32. The model was quantized once it was 

converted from TF to TFLite, resulting in a size reduction from 6,958 bytes to 1,172 bytes (an 83% compression 

with 1% accuracy loss). To amortize performance degradation, quantization aware training was used to minimize 

degradation of the model’s classification capacity with high fidelity. The model dropped down to 95% accuracy 

when deployed on the ESP32, (with most misclassifications along the Abnormal and Annual Maintenance classes) 

but, still, better than I would have thought possible: it correctly classified 95% of the data points. 

The performance results reported here verify that despite its simplicity, LR is a highly competitive edge 

computing algorithm. Inference latency on the ESP32 was about 12 milliseconds per prediction and achieved 76 

inferences per second - an order of magnitude improvement over TF's cloud latency of ~103msec. However, these 

are remarkable results, in view of the typical response requirements for industrial fault detection systems that range 

from 50 to 100 ms [18]. Furthermore, the model requires a compact memory footprint that effectively uses the 

hardware resources, which allows the model to be viable for battery-powered or solar-powered installations in 

remote plant environment. 

Additionally, the classification report of TFLite implementation revealed that the model had high precision and 

F1 scores across all classes. These metrics are important in minimizing false alarms and missed faults – two of the 

key points to consider while implementing predictive maintenance systems. The result is that false positives lead 

to unnecessary maintenance actions, increased operational costs, while false negatives risk critical failures. The 

model ensures operational reliability as well as cost effectiveness by balancing the two error types. 

The intermediary step i.e., TFLite deployment offered valuable insight into the optimization trade-offs before 

microcontroller deployment. As shown in Figure 8, the quantized model retained much of its classification 

performance, with only minimal degradation compared to its TensorFlow counterpart. The confusion matrix 

reveals strong classification accuracy: 88 out of 91 instances of the Normal class were correctly classified (96.7%), 

all 107 instances of Early Maintenance were correctly classified (100%), and 91 out of 91 instances of Annual 

Maintenance (100%) were correctly predicted. The Abnormal class has predicted 107 correct predictions out of 

111 (96.4%), with 4 misclassified as Annual Maintenance. Only 3 instances of the Normal class were misclassified 

as Annual Maintenance. These results underscore the effectiveness of quantization-aware training in preserving 

critical decision boundaries within the model. The TFLite implementation thus serves as a reliable bridge between 

high-performance cloud inference and constrained edge deployment, offering rapid predictions (~2.4 ms latency) 

while occupying minimal memory (1172 bytes), suitable for near-edge devices with moderate computational 

capacity. 

In the broader context of embedded AI systems, the performance demonstrated in this study compares favorably 

with existing literature. For instance, Wang et al. [19] developed a fault diagnosis model for permanent magnet 

synchronous motors using a one-dimensional convolutional neural network (1D-CNN). Their model achieved a 

classification accuracy of 98.85% and was implemented on an NVIDIA Jetson Nano platform. While effective, 

such models often require higher memory and processing power, limiting their scalability across microcontroller 

networks. In contrast, the ESP32-based deployment in this study achieved comparable accuracy with significantly 

lower power and memory requirements. Similarly, Caesarendra et al. [20] proposed an automatic ECG signal 

classification system using a CNN model, which was embedded in an NVIDIA Jetson Nano processor for real-

time classification. Although their system demonstrated high accuracy (92.5%), the energy and hardware 

requirements are substantially higher than those in this study, emphasizing the value of logistic regression paired 

with TinyML. 
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Another important dimension of this research is the interpretability of the model. Logistic regression provides 

clear and traceable relationships between input variables and output classifications, which is a key requirement in 

safety-critical domains like power generation [34]. Interpretability not only facilitates better trust in AI systems but 

also aids in root cause analysis and the development of targeted maintenance protocols. In contrast, black-box 

models such as deep neural networks, although powerful, obscure internal decision processes and often require 

post hoc explainability tools like SHAP or LIME to make sense of their predictions [21, 35]. 

The quantifiable trade-offs between performance, latency, and hardware efficiency are visualized in Table 2 

and Figure 9. The cloud-based TF model, while offering the highest accuracy and full computational flexibility, is 

hindered by latency and reliance on constant internet connectivity—factors that are impractical in field-based 

industrial settings. The TFLite version bridges this gap, offering near-equivalent accuracy with drastically reduced 

latency and model size. Finally, the ESP32 deployment strikes a fine balance by offering real-time inference and 

sufficient accuracy, with the added benefits of cost-effectiveness, energy efficiency, and autonomous operation. 

This tri-tiered deployment strategy confirms that TinyML can enable flexible, scalable, and resilient predictive 

maintenance systems. 

The utility of the ESP32-based system extends beyond the boiler feed pump to other rotating machinery in the 

plant, including turbines, compressors, and auxiliary motors. Since the input features—temperature, pressure, flow 

rate, running hours, and alert indicators—are common to many mechanical subsystems, the same architecture could 

be retrained and reused for other equipment with minimal adjustments. This reusability potential significantly 

reduces implementation costs, aligning with literature advocating for transfer learning in embedded systems [22]. 

Despite the positive results, there are limitations worth acknowledging. First, the dataset size was limited to a 

few hundred labeled samples due to constraints in historical data availability. Although the model performed well 

on this dataset, larger datasets would be needed to ensure robustness against rare or unexpected failure modes. 

Second, the current model assumes static relationships between features and outcomes, which may not hold under 

evolving operational conditions or sensor drift. Future work could explore adaptive models capable of online 

learning or regular retraining through federated learning paradigms. 

Third, energy profiling of the ESP32 inference cycles remains an open area of investigation. While the device 

is known for low power consumption, precise measurements would help optimize deployment strategies, 

particularly in off-grid installations. Furthermore, secure model updates, device provisioning, and integration with 

SCADA systems would be critical for scaling this solution across multiple plants [23]. 

Lastly, the deployment of autonomous AI systems in critical infrastructure raises ethical and regulatory 

considerations. Accountability in case of false positives or negatives, model auditing, and fail-safe mechanisms 

need to be clearly established. As discussed by Herrera-Poyatos et al. [24], deploying interpretable models is a step 

toward algorithmic accountability, but governance frameworks must also be put in place to ensure AI systems align 

with operational and societal expectations. 

VIII. CONCLUSION 

 

To conclude, this study has developed and deployed a logistic regression based predictive maintenance model 

for the boiler feed pumps at Kuwait’s Sabiya Steam Power Plant using the TinyML technology and the ESP32 

microcontroller. Thus, the model achieved high classification accuracy 99% in the cloud, 98% in TensorFlow Lite, 

95% on embedded hardware with low latency and low memory footprint. These results show that edge-based 

machine learning can be viable for real time, industrial fault detection with a cost and scalable approach over cloud 

dependent systems. Finally, the research emphasizes this fact that reliable performance is realised with feature 

engineering specific to the domain and interpretability of the model. The framework is replicable using open-source 

tools, and applicable to other industrial environments to contribute to broader digital transformation goals. Future 

work should focus on adaptive learning, energy profiling and secure model updates for improving scalability and 

reliability. Finally, they contribute with a practical, high impact approach for intelligent maintenance in modern 

power systems. 

 

 

 

 

 

 



J. Electrical Systems 21-1 (2025): 357-370 

 

369 

REFERENCES 

[1] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis. “Deep Learning for 

Computer Vision: A Brief Review.” Computational Intelligence and Neuroscience 2018 (January 1, 2018): 1–13. 

https://doi.org/10.1155/2018/7068349.  

[2] Jabbar, M. Akhil, B.L. Deekshatulu, and Priti Chandra. “Classification of Heart Disease Using K- Nearest Neighbor and 

Genetic Algorithm.” Procedia Technology 10 (2013): 85–94. https://doi.org/10.1016/j.protcy.2013.12.340.  

[3] Warden, Pete, and Daniel Situnayake. “TinyML Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-

Power Microcontrollers PREVIEW of FIRST SIX CHAPTERS Buy the Full Book at Tinymlbook.com,” n.d. 

https://tinymlbook.com/wp-content/uploads/2020/01/tflite_micro_preview.pdf. 

[4] Kumar Yash. "Tomato Plant Disease Detection using TinyML." GitHub Repository. Available at: https://github.com/its-

kumar-yash/Tomato-Plant-Disease-Detection-Model 

[5] Khan, Mohammad Ayoub. “An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier.” IEEE 

Access 8 (January 1, 2020): 34717–27. https://doi.org/10.1109/access.2020.2974687.  

[6] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997. 

https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf  

[7] Hosmer Jr, David W., Stanley Lemeshow, and Rodney X. Sturdivant. Applied logistic regression. John Wiley & Sons, 

2013. https://www.researchgate.net/profile/Andrew-

Cucchiara/publication/261659875_Applied_Logistic_Regression/links/542c7eff0cf277d58e8c811e/Applied-Logistic-

Regression.pdf  

[8] Schizas, Nikolaos, Aristeidis Karras, Christos Karras, and Spyros Sioutas. "TinyML for ultra-low power AI and large scale 

IoT deployments: A systematic review." Future Internet 14, no. 12 (2022): 363. https://doi.org/10.3390/fi14120363  

[9] Lei, Yaguo, Zhengjia He, and Yanyang Zi. “A New Approach to Intelligent Fault Diagnosis of Rotating 

Machinery.” Expert Systems with Applications 35, no. 4 (September 13, 2007): 1593–1600. 

https://doi.org/10.1016/j.eswa.2007.08.072.  

[10] Bishop, Christopher M. “Pattern Recognition and Machine Learning.” SpringerLink, 2016. https://doi.org/10.1007-978-

0-387-45528-0. 

[11] Abellan-Nebot, Jose Vicente, and Fernando Romero Subirón. “A Review of Machining Monitoring Systems Based on 

Artificial Intelligence Process Models.” The International Journal of Advanced Manufacturing Technology 47, no. 1-4 

(July 29, 2009): 237–57. https://doi.org/10.1007/s00170-009-2191-8.  

[12] Truong, Huong Thu, Bac Phuong Ta, Quang Anh Le, Dan Minh Nguyen, Cong Thanh Le, Hoang Xuan Nguyen, Ha Thu 

Do, Hung Tai Nguyen, and Kim Phuc Tran. “Light-Weight Federated Learning-Based Anomaly Detection for Time-Series 

Data in Industrial Control Systems.” Computers in Industry 140 (September 2022): 103692. 

https://doi.org/10.1016/j.compind.2022.103692  

[13] Yu, Wenjin, Yuehua Liu, Tharam Dillon, and Wenny Rahayu. “Edge Computing-Assisted IoT Framework with an 

Autoencoder for Fault Detection in Manufacturing Predictive Maintenance.” IEEE Transactions on Industrial 

Informatics 19, no. 4 (May 30, 2022): 5701–10. https://doi.org/10.1109/tii.2022.3178732.  

[14] Javed, Abbas, Muhammad Naeem Awais, Ayyaz-ul-Haq Qureshi, Muhammad Jawad, Jehangir Arshad, and Hadi 

Larijani. “Embedding Tree-Based Intrusion Detection System in Smart Thermostats for Enhanced IoT 

Security.” Sensors 24, no. 22 (November 16, 2024): 7320. https://doi.org/10.3390/s24227320.  

[15] Iqbal, Mohmad, and A. K. Madan. “CNC Machine-Bearing Fault Detection Based on Convolutional Neural Network 

Using Vibration and Acoustic Signal.” Journal of Vibration Engineering & Technologies 10, no. 5 (March 26, 2022): 

1613–21. https://doi.org/10.1007/s42417-022-00468-1.  

[16] Ahmad, Muhammad Aurangzeb, Carly Eckert, and Ankur Teredesai. “Interpretable Machine Learning in Healthcare,” 

August 15, 2018, 559–60. https://doi.org/10.1145/3233547.3233667.  

[17] Fawcett, Tom. “An Introduction to ROC Analysis.” Pattern Recognition Letters 27, no. 8 (December 22, 2005): 861–74. 

https://doi.org/10.1016/j.patrec.2005.10.010.  

[18] Ding, Steven X. “Data-Driven Design of Fault Diagnosis and Fault-Tolerant Control Systems.” SpringerLink, 2021. 

https://doi.org/10.1007-978-1-4471-6410-4.  

[19] Wang, Chiao-Sheng, I-Hsi Kao, and Jau-Woei Perng. “Fault Diagnosis and Fault Frequency Determination of Permanent 

Magnet Synchronous Motor Based on Deep Learning.” Sensors 21, no. 11 (May 22, 2021): 3608–8. 

https://doi.org/10.3390/s21113608.  

[20] Caesarendra, Wahyu , Taufiq Aiman Hishamuddin, Daphne Teck, Asmah Husaini, Lisa Nurhasanah, Adam Glowacz, 

and Ahmad Fanshuri. “An Embedded System Using Convolutional Neural Network Model for Online and Real-Time 

ECG Signal Classification and Prediction.” Diagnostics 12, no. 4 (March 24, 2022): 795–95. 

https://doi.org/10.3390/diagnostics12040795.  

https://doi.org/10.1155/2018/7068349
https://doi.org/10.1016/j.protcy.2013.12.340
https://tinymlbook.com/wp-content/uploads/2020/01/tflite_micro_preview.pdf
https://github.com/its-kumar-yash/Tomato-Plant-Disease-Detection-Model
https://github.com/its-kumar-yash/Tomato-Plant-Disease-Detection-Model
https://doi.org/10.1109/access.2020.2974687
https://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
https://www.researchgate.net/profile/Andrew-Cucchiara/publication/261659875_Applied_Logistic_Regression/links/542c7eff0cf277d58e8c811e/Applied-Logistic-Regression.pdf
https://www.researchgate.net/profile/Andrew-Cucchiara/publication/261659875_Applied_Logistic_Regression/links/542c7eff0cf277d58e8c811e/Applied-Logistic-Regression.pdf
https://www.researchgate.net/profile/Andrew-Cucchiara/publication/261659875_Applied_Logistic_Regression/links/542c7eff0cf277d58e8c811e/Applied-Logistic-Regression.pdf
https://doi.org/10.3390/fi14120363
https://doi.org/10.1016/j.eswa.2007.08.072
https://doi.org/10.1007-978-0-387-45528-0
https://doi.org/10.1007-978-0-387-45528-0
https://doi.org/10.1007/s00170-009-2191-8
https://doi.org/10.1016/j.compind.2022.103692
https://doi.org/10.1109/tii.2022.3178732
https://doi.org/10.3390/s24227320
https://doi.org/10.1007/s42417-022-00468-1
https://doi.org/10.1145/3233547.3233667
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1007-978-1-4471-6410-4
https://doi.org/10.3390/s21113608
https://doi.org/10.3390/diagnostics12040795


J. Electrical Systems 21-1 (2025): 357-370 

 

370 

[21] Lundberg, Scott M, and Su-In Lee. “A Unified Approach to Interpreting Model Predictions.” Advances in Neural 

Information Processing Systems 30 (2017). 

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html.  

[22] Tan, Mingxing, and Quoc Le. “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.” PMLR, 

May 24, 2019, 6105–14. https://proceedings.mlr.press/v97/tan19a.html?ref=jina-ai-gmbh.ghost.io.  

[23] Antonini, Mattia, Miguel Pincheira, Massimo Vecchio, and Fabio Antonelli. “Tiny-MLOps: A Framework for 

Orchestrating ML Applications at the Far Edge of IoT Systems,” May 25, 2022, 1–8. 

https://doi.org/10.1109/eais51927.2022.9787703.  

[24] Herrera-Poyatos, Andrés, Del Ser, Marcos López, Fei-Yue Wang, Enrique Herrera-Viedma, and Francisco Herrera. 

“Responsible Artificial Intelligence Systems: A Roadmap to Society’s Trust through Trustworthy AI, Auditability, 

Accountability, and Governance.” arXiv.org, 2025. https://arxiv.org/abs/2503.04739. 

[25] Won Shin, Jeongyun Han and Wonjong Rhee. "AI-assistance for predictive maintenance of renewable energy 

systems." Energy, 221 (2021): 119775. https://doi.org/10.1016/J.ENERGY.2021.119775. 

[26] Swapnil Sharma. "Supervised Learning: An InDepth Analysis." INTERANTIONAL JOURNAL OF SCIENTIFIC 

RESEARCH IN ENGINEERING AND MANAGEMENT (2024). https://doi.org/10.55041/ijsrem35414. 

[27] Swapnil Sharma. "Supervised Learning: An InDepth Analysis." INTERANTIONAL JOURNAL OF SCIENTIFIC 

RESEARCH IN ENGINEERING AND MANAGEMENT (2024). https://doi.org/10.55041/ijsrem35414. 

[28] S. Chander and P. Vijaya. "Unsupervised learning methods for data clustering." (2021): 41-

64. https://doi.org/10.1016/B978-0-12-820601-0.00002-1. 

[29] Youssef Abadade, Anas Temouden, Hatim Bamoumen, N. Benamar, Yousra Chtouki and A. Hafid. "A Comprehensive 

Survey on TinyML." IEEE Access, 11 (2023): 96892-96922. https://doi.org/10.1109/ACCESS.2023.3294111. 

[30] Rashidi, Mitra. “Application of TensorFlow Lite on Embedded Devices: A Hands-on Practice of TensorFlow Model 

Conversion to TensorFlow Lite Model and Its Deployment on Smartphone to Compare Model’s Performance.” DIVA, 

2022. http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1698946&dswid=-2921. 

[31] K. Dokic, Marko Martinovic and D. Mandušić. "Inference speed and quantisation of neural networks with TensorFlow 

Lite for Microcontrollers framework." 2020 5th South-East Europe Design Automation, Computer Engineering, Computer 

Networks and Social Media Conference (SEEDA-CECNSM) (2020): 1-6. https://doi.org/10.1109/SEEDA-

CECNSM49515.2020.9221846. 

[32] M. Moleda, A. Momot and Dariusz Mrozek. "Predictive Maintenance of Boiler Feed Water Pumps Using SCADA 

Data." Sensors (Basel, Switzerland), 20 (2020). https://doi.org/10.3390/s20020571. 

[33] Emil Njor, Mohammad Amin Hasanpour, Jan Madsen and Xenofon Fafoutis. "A Holistic Review of the TinyML Stack 

for Predictive Maintenance." IEEE Access, 12 (2024): 184861-184882. https://doi.org/10.1109/ACCESS.2024.3512860. 

[34] T. Denoeux. "Logistic Regression, Neural Networks and Dempster-Shafer Theory: a New Perspective." Knowl. Based 

Syst., 176 (2018): 54-67. https://doi.org/10.1016/j.knosys.2019.03.030. 

[35] Hooshyar, Danial, and Yeongwook Yang. “Problems with SHAP and LIME in Interpretable AI for Education: A 

Comparative Study of Post-Hoc Explanations and Neural-Symbolic Rule Extraction.” IEEE Access, vol. 12, Institute of 

Electrical and Electronics Engineers (IEEE), 2024, pp. 137472–90, https://doi.org/10.1109/access.2024.3463948. 

Accessed 8 Apr. 2025. 

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.mlr.press/v97/tan19a.html?ref=jina-ai-gmbh.ghost.io
https://doi.org/10.1109/eais51927.2022.9787703
https://arxiv.org/abs/2503.04739
https://doi.org/10.1016/J.ENERGY.2021.119775
https://doi.org/10.55041/ijsrem35414
https://doi.org/10.55041/ijsrem35414
https://doi.org/10.1016/B978-0-12-820601-0.00002-1
https://doi.org/10.1109/ACCESS.2023.3294111
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1698946&dswid=-2921
https://doi.org/10.1109/SEEDA-CECNSM49515.2020.9221846
https://doi.org/10.1109/SEEDA-CECNSM49515.2020.9221846
https://doi.org/10.3390/s20020571
https://doi.org/10.1109/ACCESS.2024.3512860
https://doi.org/10.1016/j.knosys.2019.03.030
https://doi.org/10.1109/access.2024.3463948

