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Abstract: - In the context of accelerating climate change and its detrimental impact on global food systems, the integration of advanced 

technologies for monitoring pollinator populations has become critical for ensuring environmental sustainability and food security. The 

preservation of pollinators is essential for human survival. This study investigates the application of Computer Vision and Object Detection 

techniques to automatically analyze bee activity through image data. A new dataset comprising 6,993 bee-containing images was curated 

from video footage and manually labeled using bounding boxes. The dataset was divided into training (5,203), validation (902), and testing 

(828) subsets. Evaluation of various fine-tuned YOLO models based on the COCO framework revealed that YOLO v5 m delivers the highest 

recognition accuracy. Nevertheless, YOLO v5 s emerged as the most efficient for real-time detection tasks, achieving an average inference 

time of 5.7 milliseconds per frame, albeit with a modest reduction in detection performance. The final model was embedded within an 

explainable AI system that generates time stamped visual summaries, allowing easy interpretation by non-technical users, including key 

stakeholders in the apiculture sector, to support sustainable practices in pollinator management. 
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I. INTRODUCTION 

The pollination services provided by bees play a crucial role in the fruit and seed production of most plant 

species, directly impacting agricultural productivity and economic outcomes [1]. Pollination is essential to global 

agriculture, as approximately 75% of flowering plant species and 35% of food crops rely on it for successful 

reproduction [2]. According to the Food and Agriculture Organization (FAO) of the United Nations, out of the 

slightly over 100 crop species that account for 90% of the global food supply across 146 countries, 71 rely on bee 

pollination primarily from wild bees while others depend on pollination by insects such as thrips, wasps, flies, 

beetles, and moths [3]. Numerous studies have highlighted that bees and other pollinators are facing significant 

threats, with an estimated 40% of invertebrate pollinator species at risk of decline [4]. Bee colonies encounter 

numerous challenges affecting their development, reproduction, and long-term viability, including climate change, 

pesticide exposure, land use changes, and management practices. Recognizing these factors is crucial to ensuring 

effective pollination [5]. Honey bee populations are facing growing health challenges due to a combination of 

pervasive parasitic infections, emerging threats, and the extensive effects of globalization and climate change. 

These combined pressures have led to a noticeable increase in colony losses worldwide [6]. Precision Beekeeping, 

aims to assist beekeepers by enabling remote monitoring of hive conditions and identifying diverse behavioral 

patterns, including signs of irregular activity [7]. Fuzzy logic decision-making systems have been utilized to assess 

hive health by analyzing temperature data collected from both the interior of the hive and its external environment 

[8]. Identifying the presence of diseases like Varroa, which commonly occur under specific temperature and 

humidity conditions, helps beekeepers prevent hive collapse [9]. Swarming events in beehives have been detected 

using various machine learning methods, including k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), 

and Convolutional Neural Networks, particularly models based on the U-Net architecture [10]. Data augmentation 

is a widely used strategy in deep learning aimed at improving model performance by creating additional training 

samples from the original dataset through various transformation methods [11]. Distance-IoU (DIoU) loss 

integrates the normalized distance between the predicted and ground truth boxes, resulting in significantly faster 

convergence during training compared to traditional IoU and GIoU loss functions [12]. Experiments were 

conducted on real-world visual grounding datasets to validate the effectiveness of the DIoU loss function [13]. 

Beyond beekeeping applications, digital technologies are increasingly being explored across broader agricultural 

settings. Digital technologies including autonomous robotic systems, the Internet of Things, and machine learning 

have been extensively investigated, with a majority of research (69%) focusing on open-air farms compared to 

indoor farming systems (31%) [14]. In the current digital age, the volume of publicly available video content has 

grown exponentially. Processing and interpreting this vast amount of data demands robust and efficient content-

based video analysis techniques. One such approach involves identifying abrupt shot transitions and selecting 
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keyframes that best represent each video segment [15]. Integrating CNNs with recurrent neural networks (RNNs) 

creates a robust framework for video classification, enabling efficient and simultaneous processing of spatial and 

temporal information [16]. 

The rest of the manuscript is organized as follows. Section 2 describes the related work on existing methods. 

Section 3 contains the predictive methods used and section 4 includes the results and discussion. Section 5 presents 

the conclusion drawn from the study. 

 

II. RELATED WORK 

Precision beekeeping leverages sensor technologies and artificial intelligence to monitor internal hive 

conditions, support early disease detection, and enhance the overall management and optimization of beehive 

environments [17]. The global dependence on animal pollinators for crop production intended for human 

consumption has not been comprehensively assessed, and earlier estimates at national or continental levels have 

rarely been based on primary data [18]. Pollination enhances both the uniformity and quality of seeds. In large scale 

monoculture farming, such as sunflower cultivation, it becomes essential to introduce a substantial number of bees 

at the onset of flowering. This need is effectively met through mobile beekeeping a flexible and adaptive method 

that enables beekeepers to relocate hives as needed, thereby supporting better pollination and boosting honey yields 

[19]. The harmful effects of pesticides especially insecticides on bees and other pollinators are well-established. 

Insecticides can cause direct mortality among pollinators, while herbicides indirectly impact them by diminishing 

the variety and availability of floral resources essential for their survival and reproduction [20]. Bees serve as key 

pollinators for a wide range of crops, with the European dark bee (Apis mellifera mellifera L.) being commonly 

employed for pollination services. However, the extensive use of pesticides in modern agriculture poses a 

significant threat to the crucial interaction between plants and their bee pollinators. Notably, there is a shortage of 

comprehensive data on lethal exposure times, insecticide concentrations, and observable poisoning symptoms 

particularly for commercial insecticide formulations widely used in pest control [21].  

A range of environmental monitoring (EM) techniques is explored, focusing on variations in hardware 

implementation and algorithmic design. The overview emphasizes current state-of-the-art practices, particularly 

highlighting energy-efficient and low-cost EM system solutions [22]. The thematic evaluation of pollinators, 

pollination, and food production conducted by the Intergovernmental Science-Policy Platform on Biodiversity and 

Ecosystem Services (IPBES) seeks to examine animal-mediated pollination as a key regulatory ecosystem service. 

This service is recognized for its critical role in sustaining food production and contributing to human well-being 

and the benefits derived from nature [23]. Analysis of acoustic data gathered via smart sensor networks enables the 

prediction of internal hive conditions and detection of queen bee presence [24]. BeeSense employs Internet of 

Things (IoT) devices, such as temperature and humidity sensors, to continuously track and assess the internal 

environment of beehives [25]. YOLO has emerged as a key real-time object detection framework widely used in 

robotics, autonomous vehicles, and video surveillance. This work provides an in-depth review of YOLO’s 

development, highlighting the advancements and features introduced across its versions, from the initial YOLO 

model to YOLOv8, YOLO-NAS, and transformer-enhanced YOLO architectures [26]. Integrating advanced 

information technologies with decision support systems facilitates efficient beehive management, enhancing the 

survival rates of bee colonies through automated and informed decision-making processes [27]. Object detection 

methods form a fundamental part of artificial intelligence. This study provides a concise overview of the You Only 

Look Once (YOLO) algorithm along with its later advanced versions. The analysis highlights key observations and 

valuable insights, outlining both the similarities and differences among various YOLO iterations as well as between 

YOLO and traditional CNNs [28]. A real-time imaging system is presented for monitoring honey bee activity by 

counting bees entering and exiting the hive. Continuous images are captured at the hive entrance, and honey bees 

are segmented and detected using a background subtraction technique. Tracking individual bees is achieved by 

integrating a Kalman Filter with the Hungarian algorithm [29]. IoT sensors monitor temperature and humidity to 

maintain optimal conditions for bees, while continuous tracking of beehive weight helps assess hive health and 

productivity [30]. Object detection and tracking play a crucial role in computer vision and visual surveillance by 

enabling the identification, recognition, and continuous monitoring of objects within images or video sequences. 

These processes form the backbone of surveillance systems, supporting automatic video annotation, event 

recognition, and the detection of unusual activities [31]. Similar to other biofuel crops, data on how insect 
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pollinators and landscape context influence the productivity and sustainability of Jatropha curcas remain limited. 

This study examined the effects of pollinator exclusion, self-pollination, cross-pollination, and individual visits by 

the stingless bee Friese Melitta nigra and the honey bee Apis mellifera on fruit set, as well as the weight of fruit 

and seed in J. curcas [32]. HiveLink employs advanced sensors to continuously monitor internal hive conditions, 

including humidity, temperature, and weight [33]. The BHiveSense architecture enables monitoring of bee colonies 

using a low-cost sensing prototype, facilitating the prediction of internal beehive conditions [34]. 

III. METHODS 

The data collection and preprocessing, model training and data augmentation approaches and web-based 

detection interface is explained in below section. 

 

3.1 Dataset Collection and Preprocessing 

An image dataset was compiled to support automated bee detection, comprising approximately 6,993 labeled 

images with around 12,655 total bee annotations. Each image features an average of 1.8 bees, with most containing 

a single bee. The dataset includes a few images with high bee density, with up to 12 bees detected in a single frame. 

During the annotation process, images with quality issues such as heavy blur or obstructions were excluded. 

Original image resolutions ranged between 0.2 MP and 2.5 MP, with a median resolution close to 1280×720 pixels. 

To align with the YOLO input requirements, all images were resized to 416×416 pixels, and the associated 

bounding box coordinates were scaled using OpenCV to maintain proportional accuracy. The dataset contains 

various bee species, primarily including Apis mellifera species. Differences in camera angle and bee posture 

resulted in a variety of annotation sizes and aspect ratios. Figure 1 shows the sample annotated images for random 

dataset. Figure 2 shows the distribution of the number of bees per image within the dataset.  The dataset is made 

publicly accessible for research purposes and is accessible in https://www.kaggle.com/datasets/birdy654/bee-

detection-in-the-wild. 

 

     

 

     

 

Fig. 1.  Sample annotated images (red bounding boxes) and corresponding preprocessed versions selected 

randomly from the dataset. 

 

https://www.kaggle.com/datasets/birdy654/bee-detection-in-the-wild
https://www.kaggle.com/datasets/birdy654/bee-detection-in-the-wild
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Fig. 2. Distribution of the number of bees per image in the dataset, showing frequency counts with one 

dominant category. 

 

3.2 Model Training and Data Augmentation 

State of the art object detection algorithms such as YOLOv5, YOLOv5m, YOLOv5s, and YOLOv8m were 

evaluated using the compiled dataset. Instead of customizing data augmentation pipelines, the models were trained 

using default augmentation strategies. A preliminary test phase was conducted on 828 randomly selected images, 

training YOLOv5 models with and without augmentation for 30 training epochs. This step aimed to assess whether 

augmentation significantly enhanced model performance. Augmentation was applied in real time during training, 

keeping the stored dataset unchanged. Subsequently, full model training was executed over 100 epochs, and 

performance was evaluated using metrics such as precision, recall, mean Average Precision at IoU 0.5 (mAP@0.5), 

mAP@[0.5:0.95], training time, and inference speed. These evaluations ensured the model’s suitability for real-

time use with limited computational resources. 

3.3 Web-Based Detection Interface 

A prototype interface was designed for stakeholder use and is shown in Figure 3, enabling real-time bee activity 

monitoring through video/image uploads. The application extracts keyframes at half the original frame rate (FPS/2) 

and processes them using the trained object detection model. Each frame is scanned for bee presence, and detection 

events are timestamped. The system logs the number of bees per frame into a structured CSV file for easy 

visualization and further analysis. This accessible design bridges field-collected video data with automated 

inference, providing practical tools for researchers and beekeepers to monitor hive activity without requiring deep 

technical expertise. 

 

 

 

Fig. 3. Prototype interface for stakeholders 
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IV. RESULTS AND DISCUSSION 

This section details the outcomes of model training and validation, followed by the evaluation of object 

detection performance on unseen test data. Additionally, a sample user interface designed for stakeholder 

accessibility is showcased, accompanied by a comprehensive discussion of the experimental findings. 

 

4.1 Exploratory study 

To evaluate the effectiveness of various YOLO architectures, key performance metrics such as precision, recall, 

mean Average Precision (mAP), training duration, and inference speed were analyzed. The figure 4 illustrates the 

training and validation loss curves for two key metrics bounding box loss and objectiveness loss across 30 training 

epochs for both augmented and non-augmented datasets. Subplots (a) and (b) show the evolution of bounding box 

loss during training and validation respectively. It is observed that both models exhibit decreasing trends, but the 

augmented dataset consistently yields slightly higher losses in training, while producing comparable or marginally 

better performance during validation, especially in later epochs. Subplots (c) and (d) present the objectiveness loss 

trends for training and validation. The non-augmented model starts with a slightly higher loss but eventually 

converges more sharply during training, whereas the augmented model demonstrates better generalization on 

validation data with consistently lower loss values. These results suggest that while data augmentation may slightly 

hinder convergence speed during training, it offers improved generalization and robustness on unseen validation 

data. 

 

 

 

 

Fig. 4. Metric comparison of bounding box loss (Figs.(a) and (b)) and objectiveness loss (Figs. (c) and (d)) for 

a non-augmented and augmented subset of training and validation data measured over 30 epochs. 

Note: y-axis scales are not comparable. 

 

Figure 5 presents a comparative analysis of training and validation performance metrics precision, recall, 

mAP@0.5, and mAP@0.5:0.95 between non-augmented and augmented datasets over 30 epochs. In all subplots 

(a–d), the orange line (Augmented) consistently outperforms the blue line (non-Augmented), indicating that data 

augmentation positively impacts model performance. Specifically, precision and recall (subplots a and b) both show 

a steady upward trend with augmentation yielding better scores throughout. Similarly, in subplot (c), mAP@0.5 

improves more rapidly and achieves higher values with augmentation. Although mAP@0.5:0.95 (subplot d) 

exhibits greater variability, the augmented data still shows a clear advantage, especially in the later epochs. It is 
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important to note that the y-axis scale in subplot (d) is significantly different from the other three, which affects 

visual comparison. Overall, the graph highlights that data augmentation enhances model generalization and 

detection performance across key evaluation metrics. 

 

 

 

Fig. 5. Performance Metric Comparison (a)Precision, (b)Recall, (c)mAP@0.5 and (d)mAP@0.5:0.95 between 

non-augmented and augmented subsets of training and validation data over 30 epochs. 

 

4.2 Training results 

Table 1 presents a comparative summary of performance metrics for various YOLO model configurations, 

specifically Base YOLOv5, YOLOv5m, YOLOv5s, and YOLOv8, YOLOv8m, YOLOv8l. Among the models, 

YOLOv8l exhibits the highest overall performance, achieving the best precision (82.6), recall (81.6), and mAP 

scores 85.0 at IoU threshold 0.5 and 40.1 at a range of 0.5 to 0.95. YOLOv5s follows closely with strong precision 

(81.5) and efficient inference speed (6.2 ms), making it suitable for real-time applications. YOLOv5m offers a 

balanced trade-off with decent precision (81.2), recall (80.7), and mAP metrics while maintaining a moderate 

inference time. Notably, the training time required increases progressively from YOLOv5s (123 min) to YOLOv8 

(214 min), highlighting the computational demand of more advanced models. The base YOLOv5 model lags behind 

in most metrics, particularly in recall (72.2) and mAP@0.5:0.95 (30.5), emphasizing the performance 

improvements brought by the newer variants. Overall, YOLOv8l demonstrates superior accuracy and efficiency in 

object detection tasks, albeit at the cost of higher training requirements. 

Table 1: Performance Summary of YOLOv5 and YOLOv8 Model Variants 

Metric Base 

YOLOv5 

YOLOv5m YOLOv5s YOLOv8 YOLOv8m YOLOv8l 

Precision 80.1 81.2 81.5 81.8 82.2 82.6 

Recall 72.2 80.7 78.7 80.4 81.1 81.6 

mAP@0.5 75.8 81.4 81.0 83.3 85.3 85.0 

mAP@0.5:0.95 30.5 35.4 34.3 37.8 41.2 40.1 

Training Time 

(min) 

120 164 123 214 252 219 

Inference Speed 

(ms) 

6.8 7.7 6.2 4.2 5.3 4.0 
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4.3 Testing results 

A comparison of various YOLO model variants Base YOLOv5, YOLOv5m, YOLOv5s, and YOLOv8m based 

on their performance metrics and inference speed on test data are represented in Table 2. Among the models, 

YOLOv5m achieves the highest overall detection performance, with a precision of 83.0%, recall of 81.3%, and the 

highest mAP@0.5 and mAP@0.5:0.95 values at 85.3% and 42.0%, respectively. YOLOv5s follows closely in 

performance but with a significantly faster inference speed (5.2 ms), making it a balanced choice for both accuracy 

and efficiency. In contrast, YOLOv8m, despite offering competitive precision and recall, exhibits the slowest 

inference speed at 12.3 ms. The Base YOLOv5 model shows the lowest performance across most metrics but offers 

the fastest processing time at 4.9 ms. These results suggest that while more advanced models yield better accuracy, 

they generally require higher computational resources. Similarly, Table 3 provides a breakdown of the average 

processing time for different stages pre-processing, inference, and non-maximum suppression (NMS) across 

various YOLO models. The Base YOLOv5 model exhibits the lowest total processing time at 4.8 ms, with inference 

contributing the most (3.5 ms). YOLOv5s has a slightly higher total time of 5.2 ms due to increased NMS duration, 

while still maintaining fast inference. YOLOv5m, though more accurate (as seen in the previous table), requires 

significantly more inference time (6.8 ms), raising the total to 8.3 ms. YOLOv8m has the highest total time of 12.5 

ms, largely due to longer pre-processing (0.8 ms) and inference (10.2 ms) stages. This detailed view highlights the 

trade-offs between model complexity and real-time performance, making it easier to select a model based on system 

constraints and speed requirements. 

 

Table 2: Comparative Evaluation of YOLO Model Variants on Object Detection Performance and Inference 

Speed 

Metric Precision Recall mAP@0.5 mAP@0.5:0.95 Inference Speed (ms) 

Base YOLOv5 81.6 76.7 81.3 38.1 4.9 

YOLOv5m 83.0 81.3 85.3 42.0 8.3 

YOLOv5s 82.8 80.1 84.5 41.2 5.2 

YOLOv8m 82.0 80.5 83.1 37.5 12.3 

 

Table 3: Detailed Breakdown of Average Processing Time Components for YOLO Models on Test Data 

Metric Average processing time (ms) 

Pre-process Inference NMS Total 

Base YOLOv5 0.1 3.5 1.2 4.8 

YOLOv5m 0.1 6.8 1.4 8.3 

YOLOv5s 0.1 3.6 1.5 5.2 

YOLOv8m 0.8 10.2 1.5 12.5 

 

 

V. CONCLUSION AND FUTURE WORK 

This study systematically evaluated the performance of multiple YOLO object detection models namely Base 

YOLOv5, YOLOv5s, YOLOv5m, and YOLOv8, YOLOv8m, YOLOv8l across both augmented and non-

augmented datasets. The findings clearly demonstrate that data augmentation plays a crucial role in enhancing 

model generalization, as reflected by improved validation metrics such as precision, recall, and mAP scores. Among 

the tested architectures, YOLOv8l emerged as the most accurate, though it required significantly higher training 

and inference times. Conversely, YOLOv5s offered a competitive balance between speed and accuracy, making it 

an attractive option for real-time applications with limited computational resources. Analysis of training curves 

further revealed that augmentation may slightly slow convergence during training but results in superior 

performance on unseen data. The detailed runtime breakdown also provided critical insights into the computational 

costs associated with different model stages, offering practical guidance for deployment scenarios. 

Future work will focus on expanding the scope of this research to more complex and diverse datasets, potentially 

involving real-world surveillance or agricultural environments. Incorporating lightweight models such as YOLO-

Nano or employing model pruning and quantization techniques may offer further reductions in inference latency, 

making advanced object detection feasible on edge devices. Additionally, integrating attention mechanisms or 



J. Electrical Systems 20-9s (2024): 3305-3313 

 

3312 

 

transformer-based enhancements into the YOLO architecture could further improve detection accuracy, particularly 

for small or occluded objects. To support end-user interaction, future iterations will also involve refining the 

graphical user interface to allow real-time model inference, customization of detection thresholds, and visualization 

of detection confidence—all aimed at making object detection systems more accessible and operational in dynamic 

environments. 
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